

Research Article

Sero-Prevalence of Treponema Pallidum Infection and Immunological (IL-6 and TNF-A) Responses in HIV Sero-Positive Patients Attending Federal Medical Centre Gusau, Zamfara State, Nigeria

Abdullahi Y. Alkali¹, Kasim Muhtari², Nura I. Shehu³, Saratu Ibrahim⁴, Hajara Yusuf⁵, Mahmud Jibril,⁶

^{1, 3, 4, 5, 6, 7} College of Health Sciences and Technology, Tsafe,

²Yusuf Maitama Sule University, Kano.

^{1, 2, 3, 4, 5, 7} Department of Medical Laboratory Sciences, CHST-Tsafe,

²Parulniversity, Vadodara, Gujarat, India

Abstract: Human Immunodeficiency Virus (HIV) infection is a global public health concern due to associated morbidity and mortality as a result of immunosuppression. HIV is complex and remains the subject of ongoing research. HIV patients can lead to adverse outcomes and this can be averted if detected and treated. However data on this subject matter are uncommon in Gusau, Zamfara state, Nigeria. This study was designed to determine the Sero-prevalence and immunological responses among HIV attending Federal Medical Center, Gusau. A total of 301sample were collected for Serological investigations and sero-positive patients were enrolled for the study. The samples were tested using antibodies detection kit (Unigold). Flow cytometry was used to enumerate CD4⁺ T-cells and ELISA was use for quantitative detection of cytokines production. Questionnaires were used to obtain information on subject bio-data. Data were analyzed using SPSS software (Version 26.0 IBM corp, USA) to determine the relationship between socio-demographic factors, CD4⁺ T-cells and cytokines production. The overall Seropositive infection tested was 2.7% (8/301) were. Sero-positive and 97.3% (293/301) were Sero-negative. The highest Sero-prevalence of 2.8% (6/208) was recorded among female followed by 2.2% (5/221) and 2.2% (5/218) males and married with those that are engage in sexual behavior and lack of education background respectively. majority (2.7%; 8/301) of those that are Seropositive with the CD4⁺ T-cell count in male, >500 ART are males were statistical significant compare to those that are on non-ART with the total average of 326 Cells/mm³ and the female with 608 Cell/mm³ on those that are on therapy while the average of Non ART in female is < 350. The cytokines responses (IL-6 and TNF-alpha) were measure by the Used of Quantitative ELISA. Syphilis and HIV co-infection were associated with increase in IL-6 (18.5 pg/ml) and TNF- α (20 pg/ml). IL-6 and TNF- α is correlated with low CD4⁺ T cell count and high plasma cytokines values, syphilis infection was associated with significant increase cytokine production and significant decrease in the CD4⁺ T cell count. The findings underscore the importance of preventing and promoting treating of HIV infected individuals and there immunological responses, the cytokines production in HIV individual's increases conferred to the HIV-infected and not significant in the HIV-uninfected group. Serological test leads to false positives result and its result should be treated with caution. Sero-positive result should be confirmed by the use of PCR, especially in patients with low CD4⁺ T cell count to reduce unnecessary administering drugs to individuals that does not require therapy.

How to cite this article: Alkali A.Y, Muhtari K, Shehu N.I, Ibrahim S, Yusuf H, Jibril M. Sero-Prevalence of Treponema Pallidum Infection and Immunological (IL-6 and TNF-A) Responses in HIV Sero-Positive Patients Attending Federal Medical Centre Gusau, Zamfara State, Nigeria. *Research Journal of Humanities and Social Sciences.* 2026 Feb 12, 5(1):134-142.

Source of support: Nil.

Conflict of interest: None

DOI: doi.org/10.58924/rjhss.v5.iss1.p11

Received: 18-01-2026
Revised: 22-01-2026
Accepted: 07-02-2026
Published: 12-02-2026

Copyright: © 2026 by the authors. Submitted for possible open access publication under the terms and conditions of the Creative Commons Attribution (CC BY) license (<https://creativecommons.org/licenses/by/4.0/>).

1. Introduction

The Human Immunodeficiency Virus (HIV) infection is complex and remains the subject of ongoing research worldwide (Peyriere et al., 2018). Epidemiologic studies demonstrate that sexually transmitted diseases (STDs) including syphilis, and particularly genital ulcers associated with primary syphilis, are associated with an increased risk of HIV acquisition (CDC.2018). The World Health Organization (WHO) estimated that the majority of 12 million annual new cases of HIV occur in South and Southeast Asia, Latin America and Africa including Nigeria [1, 2]. Worldwide, about 45.4 million people were infected with HIV as of 2015[1, 2]. In 2015, it caused about 107,000 deaths, down from 202,000 in 1990 [1, 2]. Phagocytes are a group of cells responsible for recognition, capturing of foreign invaders and destroyed them outside the body by the use of enzymatic reaction [1]. The phagocytes include the monocytes, macrophages, neutrophil granulocytes, or dendritic cells [1]. These cells express germ-line encoded pattern recognition receptors (PRR) that detect conserved microbial structures not being present in the host [6]. The immune response to Retrovirus involves humoral and cell-mediated immunity, and both of these are implicated in resistance to reinfection [2]. Tumor necrosis factor (TNF) is a cell signaling protein (cytokine) involved in systemic inflammation and is one of the cytokines that make up the acute phase reaction [3].

2. Methodology

Specimen Collection, Preparation and Storage. Five milliliters (5ml) venous blood of each of the study participant was collected into a Vacutainer with Advanced Semi-separator gel (SST II), (Belliver Industrial Estate, Plymouth, PL6 7BP, United Kingdom) using standard method [9]. A total of 301 HIV patients attending STDs clinic at Federal Medical Center (FMC), Gusau-Zamfara State, located in Gusau local Government Area (LGA) of Zamfara State-Nigeria. The study population involved individual's attending sexually transmitted diseases (STDs) Clinic at Federal Medical Centre, Gusau-Zamfara State.

Ethical clearance. Was obtained from the Ethical Committee of Federal Medical Centre, Gusau- Zamfara State before the commencement of the study. The Sample size was determined using the formula for cross sectional studies which was proposed by Lwanga and Lemeshaw (1991), Grad and Araoye (2006). The sample size was determined based on the estimated syphilis prevalence of previous studies; the prevalence of HIV infection was 16.0 % [1, 7].

Venereal Disease Research Laboratory. Rapid test strip manufactured and described by ACON Laboratories, Inc. (USA) was used for the detection of T. palladium antibodies in serum respectively, with strict adherence to the manufacturer's instructional manual.

All patients attending STDs clinic and gave consent to participate were included in the study and those who did not give consent were excluded from the study. Written consent was obtained from the subjects prior to data and sample collection. The specimen was then dispensed in to well labeled container and was stored at -20°C until use [8]. The collected samples were transferred from STDs Clinic to the Microbiology Laboratory Unit at FMC, Gusau where they were screened for Retrovirus using UNIGOLD kit.

Flow Cytometry. Flow cytometry is a procedure used for counting cells stained with an antibody conjugate with Chromogen. The flow Cytometry is designed to analyse and separate cells stained with fluorescent antibody. The flow cytometer uses a laser beam and light detector to count single intact cells in suspension. Flow cytometry was used for counting cells stained with an antibody conjugate with Chromogen.

ELISA. A solid phase sandwich Enzyme Linked-Immuno-Sorbent Assay (ELISA). A monoclonal antibody specific for TNF- α coated was used for determination of TNF- α content and IL-6. All the data generated were analyzed using SPSS software Version 26.0(IBM corp, USA) and levels of IL-6 and TNF-alpha response against *T. pallidum* infection were expressed in pg/ml. The sero-prevalence of *T. pallidum* infection in HIV patients was expressed in proportion and percentages.

Data Analysis. All the data generated were analyzed using SPSS software Version 26.0(IBM corp, USA) and levels of IL-6 and TNF-alpha response against *T. pallidum* infection were expressed in pg/ml. The sero-prevalence of *T. pallidum* infection in HIV patients was expressed in proportion and percentages. The Chi-square was used to determine the relationship between the *T. pallidum* and HIV co-infection and socio – demographic factors of the patients. A p-value of < 0.05 was considered as significant.

3. Results

A total of 301 HIV sero-positive patients consisting of 33 (11 %) ART-naïve and 268 (89 %) ART experienced patients attending STDs clinic at Federal Medical Center (FMC), Gusau-Zamfara State were screened for *T. pallidum* infection (syphilis). Of the 301 patients, 89 (29.5%) were males 212 (70.5 %) were females (Table 1). Out of the 89 males 2 (2.2%) had syphilis and 6 (2.8%) of the 212 females were infected with *Treponema pallidum* ($P= 0.0018$). Out of the 33 ART-naïve patients tested, 6 (18.2%) were positive for syphilis while 2 or 0.8% (2 out of 268) of the ART-Experienced patients were infected. The Overall prevalence of *T. pallidum* infection was 2.7% (8 of 301) Out of this figure 2 % (6/301) were ART-naïve while 0.7% of (2/301) were ART-experienced patients (Table 3.1). Statistical analysis showed that there was significant association ($P= 0.0018$). Relationship between HIV infection and Socio-demographic factors of HIV Sero-positive Patient at Medical Center, Gusau. According to the age range, the distribution of HIV infection showed highest prevalence among patients aged 11-20 (2, 10%), 21-30(4, 3.5%), and 31-40 (2, 1.6 %). However, No HIV infection was detected patients aged 0-10 and 41-70 years ($P> 0.05$). Based on the educational status of the patients, frequency of HIV was higher among those with primary educational level and least among those who had secondary and Islamic education (Table 2). Distribution of HIV Infections based on CD4 $^{+}$ T-cell Counts. Six (6, 2%) of the HIV sero-positive patients (who were ART-naïve) had CD4 $^{+}$ cell counts of <200 cells/ μ l (mean CD4 $^{+}$ cells count = 143 cells/ μ l). Two (2, 0.6%) of these patients had CD4 $^{+}$ cell counts between 200-350 cells/ μ l (mean CD4 $^{+}$ cell counts=263 cells/ μ l), while the rest of those patients had CD4 $^{+}$ cell counts of >350 cells/ μ l (mean CD4 $^{+}$ cell counts=356 cells/ μ l) (Table 3). Levels of Cytokines Production (IL-6) in Response to *T. pallidum* infection among HIV Sero-positive Patients. A total of 8 HIV sero-positive patients were analyzed for the levels of IL-6 production. Out of the 8 patients, 3(37.5%) ($S=1$, $S=4$ and $S=8$) had the highest levels of IL-6 production (Table 4.5) while 5(62.5%) ($S=2$, $S=3$, $S=5$, $S=6$ and $S=8$) had the lowest level of cytokines production among the patients. On cytokines production in HIV patients, there was a consistent decrease in IL-6 production among syphilis negative individuals (Table.4).

Cytokines Levels (TNF- α) in Response to *T. pallidum* infection in HIV Sero-positive Patients. A total of 8 HIV sero-positive patients were analyzed for the levels of TNF- α production. Out of the 8 patients, 3(37.5%) ($S=1$, $S=4$ and $S=8$) had the highest levels of production (Table 4.5) while 5(62.5%) ($S=2$, $S=3$, $S=5$, $S=6$ and $S=8$) had the lowest level of cytokines production in normal patients. On cytokines production in HIV-experienced patients, there was a consistent decrease in IL-6 production among those who were negative (Table 5).

Table 1 Gender of HIV Sero-positive patients at Federal Medical Center, Gusau

<u>T. pallidum Detection ;</u> Parameters	P Value		
	No. (%) Screened	No. (%) positive	No. (%) Negative
Gender			
Males	89 (29.6%)	2 (2.2%)	87 (97.8%)
Females	212 (70.4%)	6 (0.5%)	206 (97.2%)
Total	301(100%)	8 (2.7%)	293 (97.3 %)
			P= 0.0018

ART-Antiretroviral therapy

Table 2 Relationship between HIVinfection and Socio-demographic factor of patients at Medical Center, Gusau.

<u>T. pallidum Detection ;</u> Demographic Positive	No (%). Characteristic	No. (%)	No. (%)	s	Screened
Gender	Characteristic	No. (%)	No. (%)	s	Screened
Gender					
Males	89 (29.5%)	2 (2.2%)	87 (98.8%)		
Females	212 (70.5%)	6 (2.8%)	206 (97.2%)		
Total	301(100%)	8 (2.7%)	293 (97.3 %)		
Age range(years)					
0-10	13	0(0.0%).	13 (100%)		
11-20	20	2(10.0%)	18 (90%)		
21-30	113	4 (3.5%)	109(96.5%)		
31-40	121	2 (1.6%)	119 (98.4%)		
41-50	19	0 (0%)	19 (100)		
51-60	10	0(0%)	10 (100%)		
61-70	5	0 (0%)	5 (100%)		
Total	301(100%)	8 (2.7%)	293 (97.3%)		
Education status					
Islamic school	63	2(3.2%)	61 (20.3%)		
Primary	108	4(3.8%)	104 (34.5%)		
Secondary	83	2(2.4%)	81 (26.9%)		
Tertiary	55	0 (0%)	55 (18.9%)		
Total	301 (100%)	8(2.7%)	293(97.3%)		

Table 3 Distribution of T. pallidum Infection among ART- naïve HIV patients Based on CD4⁺ T cells counts.

CD4⁺ Counts (Cells/ul)	Mean CD4 ⁺ No (%)No (%)			P-Value	
	Counts (Cells/ul)	of ART			
		Naïve patients for T. pallidum	positive for T. pallidum		
<200	143	33(11.3%)	6(2%)	0.0410*	
200-350	263	220 (75.0)	2(0.6%)	0.0205*	
>350	356	40(13.6%)	0(0%)	0.009	
Total	524	293(97.4%)	8(2.6%)	0.0042	

CD= cluster of differentiation

ul= microliter

Table 4 Distribution of *T. pallidum* Infection among ART-Experienced HIV patients Based on CD4⁺ T cells counts.

CD4 ⁺ Counts (Cells/ul)	Mean CD4 ⁺ No (%)		P-Value i
	Counts (Cells/ul)	No (%) of ART Experienced for <i>T. pallidum</i>	
<450	329	288 (98.3%)	5(1.7%) 0.0013*
450-650	393	2 (0.7%)	2(0.7%) 0.0025*
>650	715	3 (1.0%)	1(0.3%) 0.0018*
Total	479	293	8

CD= cluster of differentiation

ul= microliter

Table 5: Levels of Cytokines Production (IL-6 and TNF-alpha) in Response to *T. pallidum* Infection among HIV Sero-positive Patients.

No of HIV/syphilis p-value	IL-6 levels in		IL-6 levels in HIV positive	Control (N=8)
	Positive Sample Tested	ART-naïve patients (pg/ml) Tested		
S=1	20.7 (pg/ml)	11pg/ml	10.26pg/ml	0.023*
S=2	18.8 (pg/ml)	12.3 pg/ml	10.26pg/ml	0.011*
S=3	16.4 (pg/ml)	10 pg/ml	10.26pg/ml	0.002*
S=4	21.3 (pg/ml)	12 pg/ml	10.26pg/ml	0.031*
S=5	12.2(pg/ml)	11 pg/ml	10.26pg/ml	0.001*
S=6	16.5(pg/ml)	13 pg/ml	10.26pg/ml	0.002*
S=7	18.6(pg/ml)	11 pg/ml	10.26pg/ml	0.011*
S=8	22.1 (pg/ml)	10 pg/ml	10.26pg/ml	0.032*

Key

S= Sample

ART= antiretroviral therapy

IL= interleukins

Pg/ml=pictogram per mills

*Significant association

Table 6 Cytokines Levels (TNF- α) in Responses to *T. pallidum* Infection in HIV Sero-positive Patients.

No of HIV/syphilis p-value	TNF- α levels in		TNF- α levels in HIV positive	Control (N=8)
	Positive Sample Tested	ART-naïve patients (pg/ml) Tested		
S=1	24 (pg/ml)	10.2pg/ml	10.26pg/ml	0.013*
S=2	19 (pg/ml)	12.3 pg/ml	10.26pg/ml	0.021*
S=3	18 (pg/ml)	10 pg/ml	10.26pg/ml	0.012*
S=4	20 (pg/ml)	12 pg/ml	10.26pg/ml	0.001*
S=5	19(pg/ml)	11 pg/ml	10.26pg/ml	0.031*
S=6	20(pg/ml)	13 pg/ml	10.26pg/ml	0.012*
S=7	16(pg/ml)	11 pg/ml	10.26pg/ml	0.016*
S=8	24(pg/ml)	12 pg/ml	10.26pg/ml	0.023*

Key

S= Sample

ART= antiretroviral therapy

Pg/ml=pictogram per mills

TNF- α = tumor necrotic factor alpha

*Significant association

4. Discussion

Human immunodeficiency Virus constitutes a significant public health problem and it is associated with an increased risk of acquiring opportunistic resulting in aggravated morbidity and mortality [1, 2, 3]. The immunological response to syphilis in HIV infection can lead to a high production levels of the cytokines especially IL-6 and TNF-Alpha. This occurs as a result of improper response of CD4+ T-cells response to macrophages to eliminate the virus, contrasting to our result which indicates that the infection rate was lower among HIV sero-positive individuals attendees in FMC, Gusau (2.7%) and higher among sexually transmitted disease (STD) clinic attendees in Argentina (9.7%) [1, 2]. The overall sero-prevalence of 2.7% recorded in the study was higher than the prevalence of 0.9%-2.5% reported in Kenya [1, 3], and 1.8% in Uganda [1, 3]. However, the present result was lower than the figures reported elsewhere including 4.8% in older men in Kenya [1,]; 11.7 % in Kigali [1, 3]. The lower seroprevalence of HIV patients observed in this study as compared to other countries in sub-Saharan Africa may be due to increased awareness campaign about the infection and control strategies being implemented in Nigeria. It is widely believed that the high prevalence of syphilis in HIV infected patients depends on pre-ART period of individual HIV patients [1, 3]. This is consistent with the observations made in this study and other studies elsewhere [3], which showed that highly active ART appears to reduce the incidence of syphilis in HIV infected patients [1, 6]. The study recorded a low prevalence rate of HIV/syphilis co-infection and it established that there was significant association ((P= 0.0018) between the prevalence of syphilis and ART status of the HIV sero-positive patients attending Federal Medical Centre (FMC), Gusau. Although the prevalence of syphilis infection appears to be low, but the detrimental health impact on HIV patients resulting in severe morbidity and mortality has been suggested to be significant if left untreated [1, 3, 5]. It is particularly significant among those with primary educational level and less among those with secondary and Islamic education when compared between educational statuses of the patients. However, the CD4+ T-cell counts of ART-Naïve patients were lower when compared with the HIV sero-negative in this study. Thus, higher active ART has a significant role to play in reducing the incidence of. On the other hand, the IL-6 production was low among patients compared to seropositive patients. The TNF- α production levels was also low compared to the HIV-experienced patients in this study. it's recommended that the HIV sero-positive result should be confirmed by the use of PCR, especially in patients with low CD4+ T cell count to reduce unnecessary administering of drugs to negative individuals that do not require therapy and There is need to for awareness campaign among the populace on the impact of HIV to limit the spread of the disease. The importance of ART should be emphasized to all HIV positive. HIV patients with low CD4+ T-cells counts should be educated on the need to adhere to treatment and adequate management to boost their CD4+ T-cells count so that the Efficacy of drugs should be monitored periodically to regulate the emergence and spread of the drug resistance particularly HIVwhich are sexually transmitted that leads to the decrease in CD4+ T cells counts in HIV as well as increase in cytokines (IL-6 and TNF-a) production. Future researches are recommended, including, In vitro analysis such as identification of different antigens that share similar epitope with antigen that lead to the decrease in CD4+ T-cells and increase in cytokine (IL-6 and TNF-alpha) production. There is need for identification of different classe of antibody (IgM or IgG) against HIV infection in other to identify whether the infection is primary or secondary infection.[1, 2, 3]'

Disclosure

This article contain study with Human participant and is hospital base by the Author

Conflicts of interest

There are no conflicts of interest between the Authors.

Acknowledgements

The Authors are delighted to acknowledge Bayero University, Kano, FMC Gusau, College of Health Sciences and Technology, Tsafe and Parul University, Vadodara, Gujarat, India

References

1. Amaratunge, B.C., Camuglia, J.E., and Hal, I. A.J. (2010) Syphilitic uveitis: a review of clinical manifestations and treatment outcomes of syphilitic uveitis in human immunodeficiency virus-positive and negative patients. *Clinical Experimental Ophthalmology* 2; 38:68.
2. Anderson, B., Martin, I.E., Tsang, R.S.W., Sutherland, K., Tilley, P., Read, R., Roy, C., and Singh, A.E. (2009). Molecular characterisation of syphilis in patients in Canada: Azithromycin resistance and detection of *Treponema pallidum* DNA in Whole-Blood Samples Versus Ulcerative Swabs. *Journal of Clinical Microbiology*. 47:1668-1673.
3. Andrade, R., Rodriguez-Barradas, M.C. and Yasukawa K,. Single Dose versus 3 Doses of Intramuscular Benzathine Penicillin for Early Syphilis in HIV: A Randomized Clinical Trial. *Clinical Infectious Diseases*. 2017; 64:759-780.
4. Alaska, E., Asai, Y., Jinno, T. and Ogawa, T. (2018). Oral Treponemes and their Outer membrane Extracts Activate Human Gingival Epithelial Cells through Toll-like Receptor 2, *Infectious Immunology*.71 (2): 717-725.
5. Azadian, B., Cohen, C.E., Augenbraun, M., Winston A, Asboe D, Boag F, Mandalia S, and Hawkins DA. Increasing Detection of Asymptomatic Syphilis in HIV patients. *Sexually Transmitted Infections*. (2005) 81:217-219.
6. Bai, Z.G., Wang, B. and Yang, K. (2012). Azithromycin versus penicillin G benzathine for early syphilis. *Cochrane Database System Revised*, 2012; 41 (4): 217-225
7. Balba, G.P., Kuma,r P.N., and James, A.N., (2006). Ocular syphilis in HIV-positive patients receiving highly active antiretroviral therapy. *Journal of Medical immunology*,; 119:448.e21.
8. Bauer, S., Kirschning, C. J., Hacker, H., Redecke, V., Hausmann, S., Akira, S., Wagner, H. and Lipford, G. B. (2001). Human Tole-like Receptor- 9 Confers Responsiveness to Bacterial DNA via Species-Specific cpg Motif Recognition, *National Academic Sciences. USA* 98 (16): 9237-9242.
9. Benfield, T., Kofoed, K., Gerstoft, J., and Mathiesen, L.R., (2006). Syphilis and Human immunodeficiency virus (HIV)-1 coinfection: Influence on the CD4 T-Cell count, HIV-1 Viral Load and Treatment Response. *Sexually Transmitted Diseases*. (2006) 33:143-148.
10. Bennnett, M.P, Hazlett, K.R.O., Cox, D.L., Decaffmeyer, M, Desrosiers, DC, La Vake CJ, La Vake ME, Bourell KW, Robinson EJ, Brasseur R, and Radolf JD. (2005). TP0453, a Concealed Outer Membrane Protein of *Treponema pallidum*, Enhances Membrane Permeability. *Journal of Bacteriology*. (2005) 187:6499-6508.

11. Blank, S., Pathela, P., Braunstein, S.L., Schillinger, J.A., Shepard, C. and Sweeney M. (2011). Men who have Sex with Men have a 140-fold Higher Risk for Newly Diagnosed HIV and Syphilis Compared Heterosexual Man in New York City. *Journal of Acquired Immunodeficiency Syndrome*. 58:408-416.
12. Boileau, C., Clark, S., Bignami-Van Assche, S., Poulin, M., Reniers, G., and Watkins, S.C. (2009). Sexual and marital trajectories and HIV infection among ever-married women in rural Malawi. *Sexually Transmitted Infection*. (2009); 85(Suppl 1):i27–i33.
13. Bolan, R.K, Beymer, M.R, and Weiss RE. (2015) Doxycycline prophylaxis to reduce incident syphilis among HIV-infected men who have sex with men who continue to engage in high-risk sex: a randomized, controlled pilot study. *Sexually Transmitted Infections*. 2015 Feb; 42(2):98-103.
14. Bozicevic, I., Lepej, S.Z., Rode, O.D., Grgic, I., Jankovic, P., and Dominkovic, Z. (2012). Prevalence of HIV and sexually transmitted infections and patterns of recent HIV testing among men who have sex with men in Zagreb, Croatia. *Sexually Transmitted Infections*; 88(7):539–544.
15. Brinkman, M.B., McGill, M.A., Pettersson, J., Rogers, A., Matejková, P., Smajs, D., Weinstock, G.M., Norris, S.J. and Palzkill, T. (2008). A Novel *Treponema pallidum* antigen, TP0136, is an Outer Membrane Protein That Binds Human Fibronectin. *Infection and Immunity*. (2008) 76:1848-1857.
16. Buchacz, K., Klausner, J.D. and Kerndt, P.R. (2005). HIV incidence among men diagnosed with early syphilis in Atlanta, San Francisco, and Los Angeles, 2004 to 2005. *Journal of Acquired Immune Deficiency Syndrome* 2008; 47:234.
17. Buchacz, K., Patel, P., and Taylor, M. (2004). Syphilis increases HIV viral load and decreases CD4 cell counts in HIV-infected patients with new syphilis infections. *AIDS*. 18:2075.
18. Burchell, A.N., Allen, V.G., Gardner, S.L., Moravan, V., Tan, D.H. and Grewal, R. (2015). High incidence of diagnosis with syphilis co-infection among men who have sex with men in an HIV cohort in Ontario, Canada. *BMC infectious diseases*. 15:356.
19. Cai, R., Cai, W., Zhao, J., Chen, L., Yang, Z. and Tan, W. (2015) Determinants of recent HIV testing among male sex workers and other men who have sex with men in Shenzhen, China: a cross-sectional study. *Sexual Health*. 12 (6):565-7.
20. Cai, R., Zhao, J., Cai, W., Chen, L., Richardus, J.H. and de-Vlas, S.J. (2014). HIV risk and prevention behaviors in men who have sex with men and women: a respondent-driven sampling study in Shenzhen, China. *AIDS Behaviors*. 18 (8):1560–1568.

ABOUT EMBAR PUBLISHERS

Embar Publishers is an open-access, international research based publishing house committed to providing a 'peer reviewed' platform to outstanding researchers and scientists to exhibit their findings for the furtherance of society to provoke debate and provide an educational forum. We are committed about working with the global researcher community to promote open scholarly research to the world. With the help of our academic Editors, based in institutions around the globe, we are able to focus on serving our authors while preserving robust publishing standards and editorial integrity. We are committed to continual innovation to better support the needs of our communities, ensuring the integrity of the research we publish, and championing the benefits of open research.

Our Journals

1. [Research Journal of Education , linguistic and Islamic Culture - 2945-4174](#)
2. [Research Journal of Education and Advanced Literature – 2945-395X](#)
3. [Research Journal of Humanities and Cultural Studies - 2945-4077](#)
4. [Research Journal of Arts and Sports Education - 2945-4042](#)
5. [Research Journal of Multidisciplinary Engineering Technologies - 2945-4158](#)
6. [Research Journal of Economics and Business Management - 2945-3941](#)
7. [Research Journal of Multidisciplinary Engineering Technologies - 2945-4166](#)
8. [Research Journal of Health, Food and Life Sciences - 2945-414X](#)
9. [Research Journal of Agriculture and Veterinary Sciences - 2945-4336](#)
10. [Research Journal of Applied Medical Sciences - 2945-4131](#)
11. [Research Journal of Surgery - 2945-4328](#)
12. [Research Journal of Medicine and Pharmacy - 2945-431X](#)
13. [Research Journal of Physics, Mathematics and Statistics - 2945-4360](#)