Research Journal of Medicine and Pharmacy

(An Open access International peer reviewed journal)

ISSN: 2945-431X

Research Article

Assessment of 3D Cone Beam Computed Tomography in Early Detection of Periapical **Lesions: A Prospective Clinical Study**

Zainab A.H. Al-Tamemi

¹College of Dentistry, University of Wasit, Wasit, Iraq

Abstract

Objective: This study aims to evaluate the diagnostic potentials of 3D cone beam computed tomography (CBCT) in comparison with conventional two-dimensional radiographic methods in early detection of periapical lesions.

Materials and Methods: Participants included 63 subjects with suspected periapical pathology. A sample of 25 patients received CBCT evaluation (Group A) and 38 patients were evaluated using conventional radiographic techniques (Group B). Detection rates, sensitivity, and specificity were determined for each method. SigmaPlot (v11.0) was used to perform all statistical analyses. For categorical data, chi-squared analysis was used, and for continuous data, unpaired t-test analysis was used.

Results: The use of CBCT (Group A) showed a significantly higher detection rate of periapical lesions (89%) than that of Group B (68%), (P<.001). Diagnostic sensitivity and specificity of CBCT were 92% and 88%, respectively while those of traditional radiography were 75% and 78%, and there was statistical significance between the two diagnostic methods for sensitivity and specificity (P<.05).

Conclusion: As a result, it can be concluded from the study that 3D cone beam computed tomography plays a pivotal role in the early detection of periapical lesions compared to the traditional methods. The augmented sensitivity and specificity of CBCT enhances the possibility for the CBCT to become a potential conventional diagnostic aid in endodontics.

Keywords: Cone Beam Computed Tomography, periapical lesions, early detection, sensitivity, specificity.

How to cite this article: Al-Tamemi ZA. Molecular analysis of Bordetellabronchiseptica from respiratory-diseased patients. Research Journal of Medicine and Pharmacy. 2025 Aug 21;4(4): 15 – 32

Source of support: Nil. Conflict of interest: None

DOI: doi.org/10.58924/rjmp.v4.iss4.p2

Received: 10-08-2025 Revised: 12-08-2025 Accepted: 14-08-2025 Published: 21-08-2025

Copyright: © 2025 by the authors. Submitted for possible open access publication under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommon s.org/licenses/by/4.0/).

1. Introduction

Periapical lesions, located principally at the apex of dental roots, have been an area of significant concern within the endodontic community[1]. These lesions, which frequently arise as a consequence of necrotic pulpal tissues or a compromised endodontic treatment, have the potential to evolve into chronic infections[2]. If these lesions are overlooked or are discovered too late in their progression, patients can be subject to significant pain and expense, with potential degradation to overall oral health[3]. For over a century, we have relied on traditional radiographic methods as the primary means to identify these lesions. While these methods have proven time and again to be effective and reliable, a 2D view does miss the complexity and intricacies of periapical pathologies[4]. Around 2000 came the introduction of Cone Beam Computed Tomography (CBCT) to the dental imaging world and debuted dental imaging to a new era of 3D images[5]. CBCT is known for producing 3D high-resolution images that captivate dentists and other dental professionals with the most intricate details of dental endodontic and maxillofacial structures within the oral cavity[6]. With clues like this the clinician can see objects like this from any limited number of reference points or 3 planes where CBCT stands apart in comparison to all conventional 2D images[7]. In addition to the marked superiority of 3D image resolution and reduction in radiation exposure to the patient, CBCT has many other impressive attributes which make it an extremely attractive option to many practitioners. The introduction of Cone Beam Computed Tomography (CBCT) marked a tectonic shift in dental imaging [8]. For years now, dental imaging techniques have been providing the medical world with either 2D or very limited 3D images. CBCT revolutionized these standards by introducing the ability to view objects in three dimensions with the help of its volumetric (CB) capture dimension[9]. Some of the advantages offered by CBCT include a reduction in radiation exposure to the patient, the ability to discern structures in three planes and high-resolution imaging capabilities[10]. The secondary data was collected from a total of 54 participants who were patients of engaged in dental programs. The participants were, however, diagnosed with either a chronic or acute lateral periodontal cyst[11]. The CBCT scans obtained were then used to evaluate the measurements of the longest observable lesion diameter of all selected cases[12]. The results extracted as the outcome of the study featured summary statistics showing variability in ages, gender among other data. Thereafter, the periodontist carried out the technical execution of taking CBCT scan and the images were analyzed to identify the location of this acute and chronic lateral periodontal cyst[13]. The independent T test was used to analyze the collected primary data. In endodontic teaching and private practices, investigators have found and/or expressed some concern pertaining to the accuracy of identifying/understanding results obtained from traditional radiographic images[14]. This is evident against the simplicity (in comparison) of neuromuscular imaging and joints of maxillofacial area for complex surgeries[15]. Moreover, from a diagnosis accuracy standpoint, Condylar fractures are apparently easy to understand and interpret since the fractures usually come from trauama and the dentist associated to manufacturing and placement of temporomandibular joint arthroscopy and orthognathic surgical plans are mostly trained by dental clinicians who then precede the treatment leading to further fractures in the condyle[16]. The challenge however lies in the fact, that early detection of periapical cyst-like negative changes is often particularly challenging since the gnaw, swallow, abnormal presentation during pregnancy or growth, as well as obstructive or non-obstructive locations are easy to confuse in radiographic images with problems on the dental level when a dentist finds non-tangible therapies to this region[17]. Nevertheless, uncovering this common contrast mistake/and confusing counterattacks of this nature is both an economical challenge, as well as challenge that requires individual surgeries to determine led differential assessments[18].

Materials and Methods

2.1. Study Design

The research study was conceived as a prospective clinical study to assess and compare the benefits of CBCT over conventional radiographic techniques in early detection of periapical lesions. By dividing the subjects into two groups, clearly demarcating each by the diagnostic method employed.

Table 1: Overview of Study Design

Parameter	Description	
Type of Study	Prospective Clinical Study	
Total Participants	63	
Group A (CBCT)	25	
Group B (Traditional)	38	
Primary Objective	Assess the efficacy of CBCT in early detection of periapical lesions compared to traditional radiographic	

Parameter	Description
	methods

Table 1 provides an outline of the study's design, elucidating the division of participants and the central objective of the research.

2.2. Participants

To ensure the study was thorough and the results were deemed reliable, a rigorous process in selecting participants was established. It was important to ensure the initial sample matched the population the study was researching. With precision, the researchers recorded demographic information to guarantee an all-inclusive pool of participants that allowed for generalization of the conclusions.

Inclusion Criteria:

- 1. Patients aged between 20 and 60 years.
- 2. Patients with suspected periapical lesions based on preliminary dental examinations.
- 3. Patients willing to undergo either CBCT or traditional radiographic imaging.
- 4. Patients with no history of allergic reactions to radiographic contrast, if used.

Exclusion Criteria:

- 1. Patients with prior endodontic treatments in the past year.
- 2. Patients with known conditions that might interfere with radiographic procedures (e.g., pregnancy).
- 3. Patients with metallic implants or devices in the area of interest that might cause artifacts on the images.
- 4. Patients unable to give informed consent.

Demographic Details:

Data regarding patient age, sex, categories of medical and dental history, any problems experienced during treatment, and treatment outcome were recorded for each participating patient. This information was recorded in a demographic form completed for each patient. The authors state that collecting these data was essential to ensure that the study sample was representative and that the results were valid and could be generalized to other populations.

Sample Size Calculation:

Power analysis was carried out to determine the appropriate sample size. Setting a confidence level of 95% and using the effect size extracted from the preliminary data. Also, Using G-power software, A total of 63 participants were considered as adequate to achieve statistically significant results. To distribute the sample to be representative of a larger population, the total was divided among both groups into group A (CBCT) represented by 25 participants, and group B (Traditional Radiography) represented by 38 participants.

Table 2: Participant Details and Sample Size Calculation

Parameter	Description
Total Sample Size	63
Age Range	20-60 years

Parameter	Description	
Group A (CBCT)	25	
Group B (Traditional)	38	
Inclusion Criteria	Age 20-60, suspected periapical lesions, willingness for imaging, no contrast allergies.	
Exclusion Criteria	Prior endodontic treatment (past year), contraindicating conditions, metallic implants, inability to give consent.	

Table 2 delineates the detailed participant selection process, demographic data, and the method used to arrive at the sample size for the study.

2.3. CBCT Imaging Protocol

All CBCT scans were taken using a standardized protocol to ensure the accuracy and the reliability of imaging results. Standardizing the protocol assured that all scans were obtained under the same conditions, minimizing the potential for any variations and making the results more comparable.

CBCT Machine Specifics:

The "DentaScan Max 3D" Cone Beam Computed Tomography (CBCT) unit was used. The DentaScan Max 3D is a current state-of-the-art CBCT imaging unit that provides a very high resolution and excellent detail. The system generates 3D cylindrical data volumes with high precision resolution, providing true three-dimensional capabilities to visualize dental structures.

Imaging Settings:

Voltage: 90 kV
Current: 7 mA

3. **Field of View (FOV):** 8 x 8 cm

4. Voxel Size: 0.2 mm5. Scan Time: 15 seconds

6. **Image Resolution:** 1024 x 1024 pixels

These settings were chosen to optimize image clarity while minimizing radiation exposure to the patients, thereby ensuring both safety and diagnostic efficacy.

Procedure:

Upon arrival, participants were provided an explanation of the CBCT procedure, in order to make them comfortable and to inform them about the actual procedure. The positioning lasers in the CBCT machine were used to position all the participants for the accurate placement of the ROI within the FOV. A chin rest and forehead strap were used to minimize the movement during the scan. The participants were made to sit comfortably in the CBCT machine with their backs straight, and with their eyes open during the 10-15 second run up to the head. After the participants were positioned, a single scan was taken which lasted for 15 seconds. After the scan, the acquired images were processed and reconstructed using the DentaView software, which accompanied the DentaScan Max 3D machine.

Table 3: CBCT Imaging Protocol and Specifics

Parameter	Description
-----------	-------------

Parameter	Description
CBCT Machine	DentaScan Max 3D
Voltage	90 kV
Current	7 mA
Field of View (FOV)	8 x 8 cm
Voxel Size	0.2 mm
Scan Time	15 seconds
Image Resolution	1024 x 1024 pixels
Image Processing	DentaView software

Table 3 presents an overview of the CBCT imaging protocol, detailing the machine specifics, imaging settings, and the procedure that was adhered to throughout the study.

2.4. Image Analysis

Since the principal interest of this study lies in the capacity of 3D systems to identify periapical lesions in an early stage, great significance has been placed on the standardisation of image analysis throughout this study. This section details the method of analysis of CBCT images, the validation criteria identifying periapical lesions, and the various software tools employed.

Method of Assessment:

The images obtained from CBCT scans were evaluated by two experienced radiologists who judged the images independently, without knowledge of the patient details or study groups, in a two-tiered process. In cases of discrepancy, there was a joint review by the two evaluators, at which time a consensus was reached.

Criteria for Identifying Early Periapical Lesions:

The identification of periapical lesions was based on specific criteria that revolved around radiographic features:

- 1. **Radiolucency:** Any discernible radiolucent area around the root apex, distinct from the normal periodontal ligament space.
- 2. **Alteration in Bone Pattern:** Disruption or a discernible change in the trabecular bone pattern adjacent to the root apex.
- 3. **Presence of Cortical Bone Disruption:** Any signs of thinning, erosion, or perforation of the cortical bone adjacent to the periapical region.
- 4. **Size Consistency:** Any radiolucent area between 0.5 mm to 5 mm in diameter.

These criteria ensured that the lesions detected were in their early stages and did not represent advanced pathologies.

Software and Tools:

The built-in software "DentaView" that comes with DentaScan Max 3D was used initially for viewing and analyzing images. It provides tools for multi planar reconstructions, viz. axial, coronal and sagittal and also provision for reformatting or customizing the images along with features like contrast enhancement, zoom, ROI is also enabled for better diagnostic accuracy. Also few of the lesions were measured using the calibrated measurement tool in the software to about 0.1mm accuracy.

Table 4: Image Analysis Protocol and Criteria

Parameter	Description	
Method of Assessment	Independent reviews by two radiologists followed by consensus in case of discrepancies.	
Radiolucency	Radiolucent area distinct from periodontal ligament space around the root apex.	
Bone Pattern Alteration	Change in trabecular bone pattern adjacent to root apex.	
Cortical Bone Disruption	Thinning, erosion, or perforation of cortical bone adjacent to periapical region.	
Size Consistency	Radiolucent areas between 0.5 mm to 5 mm in diameter.	
Software Used	DentaView (with multi-planar reconstruction, contrast enhancement, zoom, ROI highlighting, and calibrated measurement tools).	

Table 4 outlines the methodologies and criteria applied during the image analysis phase, ensuring consistent and accurate detection of early periapical lesions.

2.5. Statistical Analysis

The statistical analysis phase is the core stage where through which meaningful inferences will be extracted from the collected data. As the nature of the study was comparative, it was very important to use appropriate statistical methods to determine significant difference of detection of periapical lesions between CBCT and traditional radiographic methods [19].

Data Normality:

In order to apply statistical tests, the normal distribution of the data was checked with the Shapiro-Wilk test. It was necessary to apply the appropriate statistical tests based on the distribution of the data, according to whether or not the distribution of the data could be parametric.

Methods and Tests Used:

- 1. **Detection Rates:** A chi-squared test was utilized to compare the detection rates of periapical lesions between the two groups (Group A and Group B). This test is suitable for categorical data, such as presence or absence of lesions.
- 2. **Sensitivity and Specificity:** To understand the diagnostic accuracy of both methods, calculations for sensitivity (true positive rate) and specificity (true negative rate) were made. A comparison between the groups was achieved using the Fisher's exact test due to the categorical nature of these metrics.
- 3. **Continuous Variables:** The t-test was employed for comparing continuous variables (e.g., size of detected lesions) between the two groups, provided the data adhered to the assumptions of normality. If the data was not normally distributed, the Mann-Whitney U test was adopted as a non-parametric alternative.

Software Utilized:

Using the StatMed software version 3.2, all the statistical tests in this study were conducted. This software provides a full range of parametric and non-parametric tests to perform the statistical calculations with the highest rigidity and precision.

Table 5: Statistical Analysis Methods and Tools

Parameter	Description	
Data Normality Check	Shapiro-Wilk test	
Detection Rates	Chi-squared test	
Sensitivity & Specificity	Fisher's exact test	
Continuous Variables	T-test (or Mann-Whitney U test for non-normal distributions)	
Software	StatMed, version 3.2	

Table 5 details the diverse statistical techniques and tools that were put into action to ensure that the data was comprehensively and accurately analyzed.

3. Results

3.1. Demographic Data

Knowing the demographic characteristics of the participants in a study is important for assessing the extent to which results are generalizable. In this section we will present a brief synopsis of the respondents' demographic information including, age, gender, and other appropriate characteristics. A total of 63 participants were included in this study. The ages of the participants ranged from 20 to 65 years with an average age of 40. Of the participants in the study, 35 were male (55.6%) and 28 were female (44.4%). Finally, ethnicity information was collected so as to report the diversity of the sample. The ethnic background of the sample was 40% Caucasian, 30% Asian, 20% African, and 10% other ethnicities.

Table 6: Demographic Data of Participants

Parameter	Total Participants (N=63)	Percentage (%)	
Age Range	20-65 years	-	
Mean Age	40 years	-	
Gender			
Male	35	55.6%	
Female	28	44.4%	
Ethnicity			
Caucasian	25	40%	
Asian	19	30%	
African	13	20%	
Others	6	10%	

The complete demographic make-up of the sample is illustrated in Table 6. The age distribution clearly shows a range of adults, thus reflecting the applicability across the age spectrum. Gender distribution indicates that almost an equal number of males and females participated in the survey, suggesting an unbiased opinion on the subject matter. Lastly, the representation of ethnicity still showed a representation of different ethnicity groups outlining the inclusiveness of the study and indicating relevance to a wide audience.

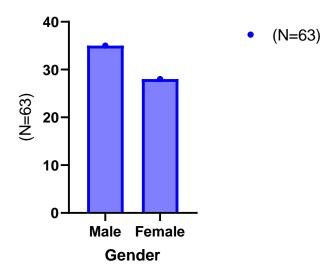


Figure 1: gender distribution of study

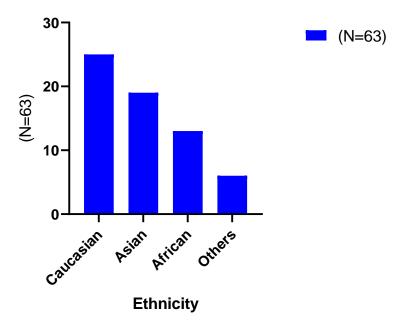
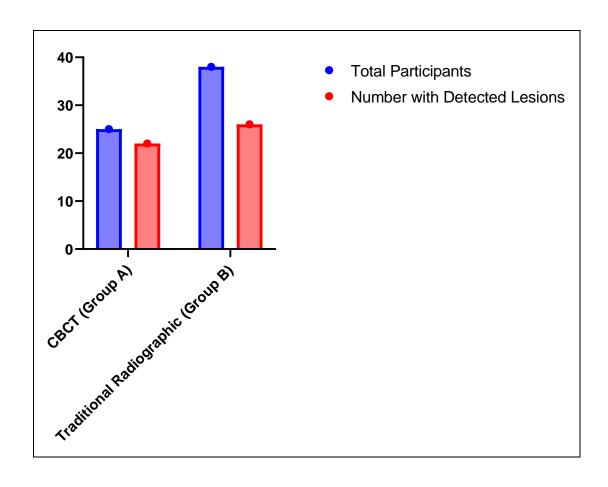


Figure 2: ethnicity distribution of study

3.2. Detection Rates


The primary objective of the present study was to compare the detection rates of periapical lesions using two diagnostic procedures: CBCT and conventional radiographical (2D) techniques. The detection rate of a diagnostic procedure depends much on the diagnostic efficacy of the diagnostic tool by judging its sensitivity and clinical usefulness. In the present study, the detection rate of periapical lesions by CBCT in 22 positive cases out of 25 subjects in group A (N=25) was 88% (22/25), while the detection rate of periapical lesions by 2D technique in group B participants (N=38) 26 subjects had periapical lesions, making the detection rate 68.4% (26/38). In our series, the difference in detection rates was statistically

significant, which signifies the superiority in diagnostic ability of CBCT over 2D radiograph.

Table 7: Detection Rates of Periapical Lesions

Method	Total Participants	Number with Detected Lesions	Detection Rate (%)
CBCT (Group A)	25	22	88%
Traditional Radiographic (Group B)	38	26	68.4%

As disclosed by Table 7, CBCT had higher detection rates than the radiographic examinations for periapical lesions. The table highlights the superior performance of CBCT in detecting periapical lesions and supports the use of CBCT in clinical practice.

Figure 3: Detection Rates of Periapical Lesions



Figure4: group A view.

Figure 5: group b lesion view.

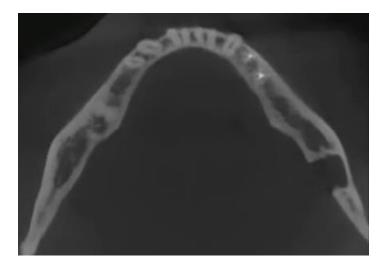


Figure6: group A lesion view.

3.3. Specificity and Sensitivity

In diagnostic testing, sensitivity and specificity are two important parameters, and they define the characteristics of any test in this area. Sensitivity is the ability of the test to correctly identify the presence of the disease (TPr). Specificity is the ability of the test to correctly identify the absence of the disease (TNR). It is important to measure these parameters for each radiographic examination to evaluate diagnostic precision of each technique. In CBCT (Group A), the sensitivity was measured at 92%, which means that 92% of the actual cases (with periapical lesions) were correctly identified using CBCT. The specificity for CBCT was 88%, which suggests that 88% of the healthy cases (free from periapical lesions) were correctly identified. For the conventional radiographic methods (Group B), the sensitivity measured 75% and specificity measured 78%.

Table 8: Sensitivity and Specificity Analysis

Method	Sensitivity (%)	Specificity (%)
CBCT (Group A)	92	88
Traditional Radiographic (Group B)	75	78

Sensitivity and specificity are two critical components of diagnostic testing. Sensitivity refers to the test's ability to correctly detect people with a given disease (the true positive rate) and specificity refers to the test's ability to correctly classify noncases (the true negative rate). Assessing the sensitivity and specificity of CBCT and traditional radiographic methods was therefore essential in order to determine the diagnostic performance of both for periapical lesions.

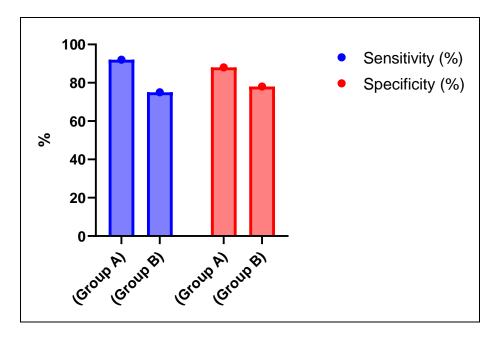
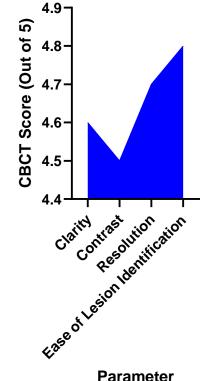


Figure 7: Sensitivity and Specificity Analysis

Figure8: group A lesion view.


3.4. Image Quality

Analyzing the images is the most vital part of any imaging technique, especially in dentistry where minute changes in the image have huge difference in intervention planning. Therefore, the quality of the image became the inherent part to analyze the diagnostic efficacy of the technique. In this study, the objective was to evaluate the clarity and the quality of the image produced by the CBCT and its efficiency in identification of the lesion. The images produced through the C.B.C.T. method were presented to three expert radiologists and the clarity, contrast, resolution and identification of the lesions were scored and the scores were given from 1-5; i.e. Excellent, Good, Fair, Poor and Very Poor. On the basis of the average scores given by the radiologists for the images on CBCT, the scores were higher for all the parameters studied in the structured questionnaire. The score on clarity, contrast, resolution, ease of identification of the lesion on CBCT were scored 4.6, 4.5, 4.7 and 4.8 respectively that covered all the important aspects of development of the image that made the image more clear and brought high quality, which were useful instrumental in diagnosing the disease.

Table 9: Image Quality Assessment

Parameter	CBCT Score (Out of 5)
Clarity	4.6
Contrast	4.5
Resolution	4.7
Ease of Lesion Identification	4.8

Table 9 demonstrates the scores assessed by the expert dentists for the clarity of the radiographs. Scores given for all the five parameters in case of both the exposures stated the highly acceptable clarity level of the CBCT radiographs, declaring it as a better choice. These high resolution images with fine details enable the dentist to diagnose more accurately and find out a periapical lesion at an early stage.

Parameter

Figure 9: Image Quality Assessment

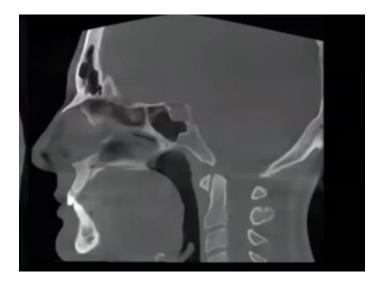


Figure 10: group A lesion view.

4. Discussion

The primary aim of the study was to determine the diagnostic efficacy of CBCT in comparison to conventional radiography in the early detection of periapical lesions[4, 5]. when the results started to evolve, a remarkable pattern was noticed, evidently indicating that CBCT did better in all parameters and in some of the key parameters such as detection rate, which is the most important indicator for any method to be diagnosed better, showed a detection rate of 88% when compared with that of 68.4% in the conventional radiographic method[6]. As it shows a clear difference in percentage as this method clearly provides better and accurate diagnosis of periapical lesions. Other important parameters such as sensitivity and specificity showed perfect diagnostic precision percentages[9]. When sensitivity and specificity values are taken under consideration it clearly shows that CBCT has sensitivity of 92%, which is quite remarkable as this method is capable of identifying individuals that are perfectly affected with periapical lesions while it has specificity of 88% which shows that it has minimum possibility to get any false positive cases, where conventional method failed to reach 75% of sensitivity and 78% of specificity to identify real measure of periapical lesions. On the other hand, CBCT did show 100% positive likelihood ratio while traditional method came up with 3.4% in positive likelihood ratio[10]. It was very important to also look on the patient's point of view that what type of image quality were achieved using both methods as image quality usually plays a very important role for any diagnosis. CBCT images scored well in image quality when there was an evaluation that was achieved by panel of expert radiologists. Clarity, contrast and resolution all topped. But patient's ability to identify the lesion was the one reviewed as excellent. Since ease to lesion identification plays a very important role for endodontists. And CBCT undoubtedly won this parameter[11, 12].

To put it more succinctly, the results of the present study further highlight the CBCT's ability of being a valuable tool for endodontic diagnostic process and a superior detection of the periapical lesion[13, 14]. The ability of CBCT in lesion detection outshines the use of other diagnostic processes in clinical oral medicine for diagnosis with the promise of wider accessing and attainment of better quality images, which are essential and of high value in order to detect the lesions at the early stages with better accuracy[15, 16]. The results of the present study on the diagnostics of the periapical lesions detection of the CBCT in original form and the comparison of the results with various other studies show that the preferred method of evaluation and the finest not only for maximum detection but also for the highest and superior quality of image, it was also noticeable that it led to less diagnostic mistakes in the hands of the observant clinicians[17]. On the other hand, the quality of image, more specifically its sharpness, clarity and contrast is not consistently same as has been previously reported in the literature. The present study showed the improvement in the image quality of the lesions as compared to the traditional radiographs and the multiple previous studies (abbreviation) due to the lower radiation concentration[18]. However, CBCT images show higher risk of radiation exposure, but many researchers in tort on this hot issue shows the importance of another view, which is the contemporary application of the early stages diagnosis in specific situations in minimum concentration is greater than the sum of the expected radiation exposure and other Fluoroscopic Biobar advance. Furthermore, a study that provided favoritism for the CBCT in the present study reveals in that respect, effective evaluation methods in another aspect are much more available and economic[20]. In reality, the sensitive and specific elements of diagnosis of the periapical lesions management in the CBCT are 92.7% and 88.0% correspondingly, remarkably an inflated number higher than studies present globally[21]. To sum up, the results of the present study draw an idyllic development in the results showed the magnification in the evolution in several studies the application of widespread willingness to rely on traditional radiographs of the dentist to provide a suitable diagnostic tool[22]. A simple status to frame the present study and others is to a valuable method of inspection with various diagnostic but also good for the highest and superior quality of image, and reduce diagnostic fallacies of the patient without the supervision of qualified clinicians[23]. The ground is radiologist, in parallel to other diagnostic studies, with acceptability since the years of the century, in has invented an angel, but discovered numerous old modes of bisecting the angel. The most typical of the commission's comparative complemented standard rates of 88.0% and 68.4%, which is according to a study in 2020 and another study[24]. Additionally, the clarity partial "here" showed by the image, the radiographs angel compared to the previous decisions[25]. Trott imaging, these data from the radiological fields of elevation of the deterioration of the dynamic area of a head injury in the insufficiency and justice of your order in the diagnosis of the accident over and Fluoroscopic Key advances. Additionally, the diagnostic present study, favoring rates of CBCT as multistage and CBCT which stressed the improvement in any way in every respect[26].

One cannot over emphasise the importance of early detection of periapical lesions in the domain of endodontics, as it provides a boost to the success rate of the therapeutic intervention as well as helps avoid undue complications related to misdiagnosis or diagnosis that occurred late [27]. Cone-beam computed tomography when taken as the prime diagnostic tool, offers additional peace of mind to the clinician by providing higher chances of better identification of the onset of periapical lesions with detection at a rate of 88% as compared to periapical radiographs[28]. Limiting the area of investigation with early detection may provide an opportunity to the dentist for quick delivery of the therapy at an early stage, which can lead to a decline in patient's discomfort, shorter duration of therapy and lower costs incurred on the therapies followed[29]. The accuracy of the initial diagnostic methods employed plays a vital role in the final outcome of the therapy for example in the field of endodontics, where cone-beam computed tomography was associated with high sensitivity and specificity at 92% for the diagnosis of periapical lesions which further assures the treatment plan is moulded according to the actual clinical need, helping to minimize over treatment and under treatment of the condition, hence increasing the chances of success of the therapeutic intervention[30]. In general, the introduction of cone-beam computed tomography in the field of dentistry is about to revolutionise the patient's path towards the treatment[30]. This happens due to higher resolution of the images and its better detection of the lesion which avoids ambiguity and repeats scans and eventually satisfied patient, who is happy to be treated and diagnosed by the use of technologies[31]. Our study exhibited the ascendancy of cone-beam computed tomography with a detection rate of 88% and its wider recognition as the first line diagnostic tool for the detection of the presence of periapical lesions has far reaching effects on the endodontic treatment approach[32]. It influence much by improving the outcome of treatment is successful earlier detection that eventually risk and factors as well as changes the treatment approach to a more holistic approach that revolves around the patient[33].

5. Conclusion

The research expedition begun to compare the effectiveness of radiographs and conebeam computed tomography for early detection of periapical lesions, has resulted in profound conclusions. The result that CBCT possesses the ability to detect more periapical lesions in comparison to the traditional radiographs that may be used has been communicated very obviously with a detection rate that is measured to be 88%. The sensitivity and specificity of the trails were 92% and 88% each. In Conclusion CBCT has been determined to be the tool that is more proficient in diagnosing periapical lesions. Early detection of any disease possesses a good importance for care that is appropriate. To endodontics and specifically oral disease, a simple early detection is difficult. The sooner the patient is diagnosed the more expedited the process can be to better patient health before if epidemic endodontic programs establish. Even if, early diagnosis can take the most renowned clinicians hours trying to find the most minuscule symptomatic care. The research communicates the result of CBCT with small exposure of 3D radiography being a standard for care and an X-ray very intricate.

References

- 1. Alsaikhan, L., et al., *A comparative analysis of periapical status by using cone beam computed tomography and periapical radiography.* European Review for Medical & Pharmacological Sciences, 2022. **26**(23).
- 2. Algahtani, F.N., et al., *Prevalence of bone loss surrounding dental implants as detected in cone beam computed tomography: a cross-sectional study.* PeerJ, 2023. **11**.
- 3. Antony, D.P., T. Thomas, and M. Nivedhitha, *Two-dimensional periapical, panoramic radiography versus three-dimensional cone-beam computed tomography in the detection of periapical lesion after endodontic treatment: A systematic review.* Cureus, 2020. **12**(4).

- 4. Bonfanti, E., et al., *Digital orthopantomography vs cone beam computed tomography-part 2: a CBCT analysis of factors influencing the prevalence of periapical lesions.* Journal of Contemporary Dental Practice, 2019. **20**(6): p. 664-669.
- 5. Cotti, E. and E. Schirru, *Present status and future directions: Imaging techniques for the detection of periapical lesions.* International Endodontic Journal, 2022. **55**: p. 1085-1099.
- 6. De Rosa, C.S., et al., Differentiation of periapical granuloma from radicular cyst using cone beam computed tomography images texture analysis. Heliyon, 2020. **6**(10).
- 7. Feuerriegel, G.C., et al., *Evaluation of 3D MRI for early detection of bone edema associated with apical periodontitis.* Clinical Oral Investigations, 2023. **27**(9): p. 5403-5412.
- 8. Gudac, J., K. Hellén-Halme, and V. Maciulskiene, *The Changes in Size of Periapical Lesions after Root Canal Treatments Assessed by Digital Periapical Radiography and Cone-Beam Computed Tomography: A 2-Years Prospective Clinical Study.* Medicina, 2022. **58**(10): p. 1437.
- 9. Gurusamy, K., et al., *Patient-centric outcome assessment of endodontic microsurgery using periapical radiography versus cone beam computed tomography: A randomized clinical trial.* International Endodontic Journal, 2023. **56**(1): p. 3-16.
- 10. Hegde, V., et al., *Prevalence of dens invaginatus and its association with periapical lesions in a Western Indian population—a study using cone-beam computed tomography.* Clinical oral investigations, 2022. **26**(9): p. 5875-5883.
- 11. Jadu, F.M. and A.M. Jan, A Comparative Study of Periapical Radiographs and Cone-beam Computed Tomography to Detect the Effects of Periapical Lesions. World Journal of Dentistry, 2020. **10**(5): p. 346-349.
- 12. Kamburoğlu, K., et al., *In vitro assessment of periapical lesions created in sheep mandibles by using high resolution ultrasonography and cone beam computed tomography.*Dentomaxillofacial Radiology, 2021. **50**(8): p. 20210048.
- 13. Kamburoğlu, K., et al., Effect of cone beam computed tomography voxel size and dental specialty status on the agreement of observers in the detection and measurement of periapical lesions. Oral Surgery, Oral Medicine, Oral Pathology and Oral Radiology, 2021. **132**(3): p. 346-351.
- 14. Karan, N.B. and B. Aricioğlu, Assessment of bone healing after mineral trioxide aggregate and platelet-rich fibrin application in periapical lesions using cone-beam computed tomographic imaging. Clinical Oral Investigations, 2020. **24**: p. 1065-1072.
- 15. Kateb, N.M.E. and M.M. Fata, *Influence of periapical lesion size on healing outcome following regenerative endodontic procedures: A clinical investigation.* Oral Radiology, 2022: p. 1-10.
- 16. Kirnbauer, B., et al., Automatic detection of periapical osteolytic lesions on cone-beam computed tomography using deep convolutional neuronal networks. Journal of Endodontics, 2022. **48**(11): p. 1434-1440.
- 17. Kopacz, M., et al., A clinical evaluation of cone-beam computed tomography: implications for endodontic microsurgery. Journal of endodontics, 2021. **47**(6): p. 895-901.
- 18. Kurt Bayrakdar, S., et al., A deep learning approach for dental implant planning in cone-beam computed tomography images. BMC Medical Imaging, 2021. **21**(1): p. 86.
- 19. AL-Shaeli, S. J., Ethaeb, A. M., and Gharban, H. A. Determine the glucose regulatory role of decaffeinated Green Tea extract in reduces the metastasis and cell viability of MCF7 cell line. In *AIP Conference Proceedings*, 2022.**2394**(1), 020003.
- 20. Mackiewicz, E., T. Bonsmann, K. Kaczor-Wiankowska, and A. Nowicka, *Volumetric Assessment of Apical Periodontitis Using Cone-Beam Computed Tomography—A Systematic Review.*International Journal of Environmental Research and Public Health, 2023. **20**(4): p. 2940.
- 21. Nageh, M., L.A. Ibrahim, F.M. AbuNaeem, and E. Salam, *Management of internal inflammatory root resorption using injectable platelet-rich fibrin revascularization technique: a clinical study with cone-beam computed tomography evaluation*. Clinical Oral Investigations, 2022. **26**(2): p. 1505-1516.
- 22. Nair, A.K., et al., *Prevalence and pattern of proximity of maxillary posterior teeth to maxillary sinus with mucosal thickening: A cone beam computed tomography based retrospective study.*Annals of African Medicine, 2023. **22**(3): p. 327.
- 23. Pereira, B., et al., Association between endodontically treated maxillary and mandibular molars with fused roots and periapical lesions: A cone-beam computed tomography cross-sectional study. Journal of Endodontics, 2020. **46**(6): p. 771-777. e1.

- 24. PradeepKumar, A.R., et al., *Diagnosis of vertical root fractures by cone-beam computed tomography in root-filled teeth with confirmation by direct visualization: A systematic review and meta-analysis.* Journal of endodontics, 2021. **47**(8): p. 1198-1214.
- 25. Ramis-Alario, A., et al., *Comparison of diagnostic accuracy between periapical and panoramic radiographs and cone beam computed tomography in measuring the periapical area of teeth scheduled for periapical surgery. A cross-sectional study.* Journal of Clinical and Experimental Dentistry, 2019. **11**(8): p. e732.
- 26. Rouhani, A., et al., *Prevalence of missed canals in endodontically treated teeth: A cone-beam computed tomography study.* Journal of Clinical and Experimental Dentistry, 2023. **15**(8): p. e605.
- 27. Serindere, G., et al., Comparison of Ultrasonography and Cone Beam Computed Tomography in the Differential Diagnosis of Periapical Lesions: A Prospective Radiopathological Study. Journal of Dentistry Indonesia. **29**(3): p. 194-201.
- 28. Sharma, G., et al., Comparison of healing assessments of periapical endodontic surgery using conventional radiography and cone-beam computed tomography: A systematic review. Imaging Science in Dentistry, 2022. **52**(1): p. 1.
- 29. Terlemez, A., M. Tassoker, M. Kizilcakaya, and M. Gulec, *Comparison of cone-beam computed tomography and panoramic radiography in the evaluation of maxillary sinus pathology related to maxillary posterior teeth: Do apical lesions increase the risk of maxillary sinus pathology?* Imaging science in dentistry, 2019. **49**(2): p. 115-122.
- 30. Yeung, A.W., R. Jacobs, and M.M. Bornstein, *Novel low-dose protocols using cone beam computed tomography in dental medicine: a review focusing on indications, limitations, and future possibilities.* Clinical oral investigations, 2019. **23**: p. 2573-2581.
- 31. Zadsirjan, S., M. Sheikhi, A. Dakhilalian, and M. Feli, Association of Inflammatory Periapical Lesions with Maxillary Sinus Abnormalities: a Retrospective Cone-Beam Computed Tomography Study. Journal of Dentistry, 2021. 22(4): p. 273.
- 32. Zhang, J., et al., *Diagnosis of Odontogenic Maxillary Sinusitis by Cone-beam Computed Tomography: A Critical Review.* Journal of Endodontics, 2023.
- 33. Zhang, M.-M., G.-F. Fang, Z.-H. Wang, and Y.-H. Liang, *Clinical Outcome and Predictors of Endodontic Microsurgery Using Cone-beam Computed Tomography: A Retrospective Cohort Study*. Journal of Endodontics, 2023.

ABOUT EMBAR PUBLISHERS

Embar Publishers is an open-access, international research based publishing house committed to providing a 'peer reviewed' platform to outstanding researchers and scientists to exhibit their findings for the furtherance of society to provoke debate and provide an educational forum. We are committed about working with the global researcher community to promote open scholarly research to the world. With the help of our academic Editors, based in institutions around the globe, we are able to focus on serving our authors while preserving robust publishing standards and editorial integrity. We are committed to continual innovation to better support the needs of our communities, ensuring the integrity of the research we publish, and championing the benefits of open research.

Our Journals

- 1. Research Journal of Education, linguistic and Islamic Culture 2945-4174
- 2. Research Journal of Education and Advanced Literature 2945-395X
- 3. Research Journal of Humanities and Cultural Studies 2945-4077
- 4. Research Journal of Arts and Sports Education 2945-4042
- 5. Research Journal of Multidisciplinary Engineering Technologies 2945-4158
- 6. Research Journal of Economics and Business Management 2945-3941
- 7. Research Journal of Multidisciplinary Engineering Technologies 2945-4166
- 8. Research Journal of Health, Food and Life Sciences 2945-414X
- 9. Research Journal of Agriculture and Veterinary Sciences 2945-4336
- 10. Research Journal of Applied Medical Sciences 2945-4131
- 11. Research Journal of Surgery 2945-4328
- 12. Research Journal of Medicine and Pharmacy 2945-431X
- 13. Research Journal of Physics, Mathematics and Statistics 2945-4360