Research Journal of Medicine and Pharmacy

(An Open access International peer reviewed journal)

ISSN: 2945-431X

Research Article

Molecular analysis of Bordetella bronchiseptica from respiratory-diseased patients.

Rajaa Ali Habeeb

Department of Pathological Analyses, College of Science, University of Al-Qadisiyah, Al-Qadisiyah, Iraq ORCID: 0009-0003-6975-9509

Abstract

Background:Bordetellabronchiseptica isa Gram-negative bacterium which known to cause respiratory disease in pet animals, and can colonize the human respiratory tract. Recently, B.bronchiseptica infections are restricted to humans and increasing worldwide.

Aim: Molecular indication of B.bronchiseptica in respiratory-diseased patientswith sequencing and phylogenetically analyzing close-relationship between tudy and global isolates, as well as measuring levels of interleukin-10 in study individuals.

Materials and methods: An overall 150 patients with various clinical signs were subjected to collection of nasal swabs for molecular testing by the conventional PCR assay. Then, some positive B.bronchisepticaisolates were sequenced and analysed phylogenetically by the MEGA-11 software to identify its identity to the global NCBI-GenBankB.bronchiseptica isolates / strains. Also, samples of venous blood were obtained from the study population as well as from 30 healthy individuals to estimate serologically the levels of IL-10.

Results: This study revealed that 10.99% of respiratory-diseased patients were positively infected with B.bronchiseptica. Phylogenetically, analyzing of study isolates detected the presence of similarity and mutations / changes at ranges of 98.14-99.91% and 0.0004-0.002%, respectively. Phylogenetic tree and multiple sequence alignment demonstrated that identity of study B.bronchiseptica isolates was to Mexican B.bronchiseptica strain (GenBank ID: FJ867619.1). The levels of IL-10 were elevated significantly in respiratory-diseased patients when compared to healthy, but not between the positively and negatively B.bronchiseptica infected patients.

Conclusion: This study implicates molecularly, for the first time in Iraq, B.bronchiseptica in respiratory-diseased patients, close-relationship between the study and global isolates throughout phylogenetic analysis, and the level of IL-10 in respiratory-diseased and the healthy population. Furthermore molecular studies are greatly needed to insight the role of B.bronchiseptica in other human infections.

Keywords: Gram-negative bacteria, PCR, IL-10, ELISA, NCBI, Iraq

How to cite this article:

Habeeb RA . Molecular analysis of Bordetellabronchiseptica from respiratory-diseased patients. Research Journal of Medicine and Pharmacy. 2025 Aug 21;4(4): 1-14

Source of support: Nil.
Conflict of interest: None

DOI: doi.org/10.58924/rjmp.v4.iss4.p1

Received: 10-08-2025 Revised: 12-08-2025 Accepted: 17-08-2025 Published: 21-08-2025

Copyright:© 2025 by the authors. Submitted for possible open access publication under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/license s/by/4.0/).

1. Introduction

Bordetellabronchiseptica is a small Gram-negative, aerobic, rod-shaped bacterium which belongs to the Alcaligenaceae family in the Burkholderiales Order under the Class of Betaproteobacteria (Kadhim et al., 2025; Mohammad et al., 2025). This bacterial pathogen that first characterized by Bordet and Gengou in 1906, is frequently implicated in infectious respiratory diseases of pet animals, dogs and cats, can cause a highly contagious condition characterized by whooping cough in particularly in children and less severe or chronic infections in adults (Mattoo and Cherry, 2005; Nieves and Heininger, 2016). To establish an infection, adherence of B.bronchisepticato apical surface of respiratory epithelial ciliais crucial as it allows the bacterium to evade mucociliary clearance mechanisms that represent the primary host defense (Brown, 2022). Indeed, the ongoing challengeof B.bronchiseptica infections, particularly the emergence of multidrug resistant strains necessitates a deeper understanding of its

antimicrobial susceptibility to guide effective therapeutic interventions (Kadlec and Schwarz, 2018; Yi et al., 2024).

IL-10 is a pleiotropic cytokine primarily recognized for potent immunosuppressive properties, playing a fundamental role in maintaining immune homeostasis and preventing excessive inflammatory responses (Carlini et al., 2023). This anti-inflammatory cytokine is widely produced by various cell types and exerts broad effects on target cells, critically modulating the immune response during diverse physiological and pathological conditions (Kany et al., 2019; Saxton et al., 2023). Dys-regulation in IL-10 signaling, such as loss of function mutations in its receptor, has been directly linked to severe hyper-inflammatory disorders, underscoring its indispensable role in controlling immune-mediated pathologies (Kumaret al., 2019; Aktay-Cetin et al., 2025). The multifaceted nature of IL-10 extends beyond mere immune suppression as it also influences cellular proliferation, differentiation, and tissue repair mechanisms (Steen et al., 2020).

Despite the clear role of B.bronchiseptica in respiratory infections, the diagnostic approaches to identify causative agents have traditionally relied on isolation from carefully collected swabs, recent advancements in molecular diagnostics, quantitative (real-time) and qualitative (conventional) PCR, have demonstrated superior sensitivity for detecting B.bronchiseptica compared to traditional culture methods, even in cases where antimicrobial treatment may have impaired bacterial growth (Calderaro et al., 2022; Jasim andRadhy, 2025; Rose et al., 2025). This includes an in-depth exploration of its taxonomic placement within the genus of Bordetella, its complex array of virulence factors that facilitate colonization and immune evasion, as well as variations in clinical presentation across different hosts (Mattoo and Cherry, 2005; Belcher et al., 2021).

In Iraq, no previous or recent studies have been done to detect the role of B.bronchisepticain respiratory infections of human. Hence, this study aims to molecular indication of B.bronchiseptica in respiratory-diseased patients with sequencing and phylogenetically analyzing close-relationship between study and global isolates, as well as measuring levels of interleukin-10 in study individuals.

2. Materials and methods Samples

An overall 150 attendingpatients for private clinics at Al-Qadisiyah province (Iraq) during January (2025) to March (2025) with various clinical signs were selected and subjected to direct collection of nasal swabs under aseptic conditions as well as draining of blood with gel tubes. Additionally, blood was drained from a 30 healthy individuals who served as a control group. At laboratory, the swab samples were used to extraction the DNAs, while blood samples were centrifuged at 5000rpm for 5 minutes and the obtained sera were kept frozen at (-20°C) until be used for serological measurement of IL-10.

Moleculartesting

After preparation the study samples at room temperature, DNAs were extracted from the nasal swab samples following the manufacturer instructions of the PrestoTM Mini gDNA Bacteria Kit (Geneaid, Taiwan). Then, Accupower ® PCR PreMix kit and one set of primers (F: 5'-TCCTGTGCAACTGACGGTAC -'3 and R: 5'-CCCAACATCTCACGACACGA -'3) designed based on NCBI-GenBank isolate (ID: NR_025949.1) targeting the16S rRNA gene, were served for preparingtheMasterMix tubes at a final volume of 20μL. For DNAs amplification, the MasterMix tubeswere

transferred to the Thermal Cycler system (BioRad, USA). Electrophoresis of agarose-gel (1.5%) stained with ethidium bromide was done at 100V and 80Am for 90min, and the positive bands were detected at an approximately 622bp using the ultraviolet system.

Phylogenetic analysis

The DNAs of some positive isolates were sequenced, and submitted in NCBI-GenBank database. For phylogeny, MEGA-11 software and NCBI-Multiple Sequence Alignment (MSA) Viewer were served to analyzing the study isolates by ClustralW Alignment, Homology Sequence Identity and Phylogenetic Tree Analysis.

Serological examination

Quantitative sandwich Human Interleukin 10 ELISA kit (catalogue number: SL0967Hu)wasserved in the present study to measurement the levels of IL-10 in respiratory-diseased patients (total number: 150) as well as in healthy individuals (total number: 30). Briefly, the serum samples and kit contents (standard and reagents) were prepared at room temperature, processed, and the optical density (OD) for all tested samples were read by the ELISA reader. Finally, concentration of IL-10 was measured in serum samples based on OD values of both the standards and serum samples as well as the concentrations of standard.

Statistical analysis

One-way ANOVA in the GraphPad Prism software was served for detecting significant differences between the obtained values (mean ± standard error) of study population at p<0.05 (Al-Gharban, 2017; Ibraheim et al., 2023).

3. Results

Molecular results

The findings of testing 150 respiratory-diseased patients revealed that 19 (12.67%) of nasal swab samples were positives by PCR assay while 131 (87.33%) samples were negatives (Figure 1).

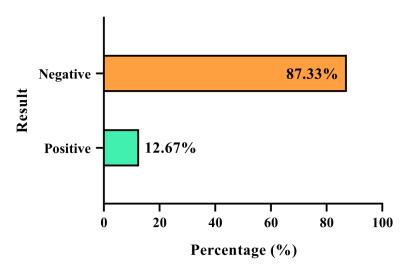


Figure (1): Total molecular results for testing 150 nasal swabs by PCR assay

In the NCBI-GenBank database, submitting of 10 study isolates were done with the respective names started from Bordetellabronchiseptica isolate RAH1 to Bordetellabronchiseptica isolate RAH10. Then, sequence data were subjected to multiple sequence alignment (MAS) by ClustralW alignment in MEGA-11 software as well as by

the NCBI-Viewer. Phylogenetic tree analysis and Homology sequence identity detected the presence of similarity and mutations / changes at ranges of 98.91-99.14% and 0.0004-0.002%, respectively with the global NCBI-BLAST B.bronchiseptica strain / isolates. However, marked identity for study B.bronchiseptica isolates was identified for Mexican B.bronchiseptica strain (GenBank ID: FJ867619.1), (Figures 2-4, Table 1).

Species/Abbry				*	:							*						*	*	*	*			*		T	Τ	*
l. Bordetella bronchiseptica isolate RAH1/Iraq (PV953379.1)	A	G .	A (C A	C	G	G	С	C (C A	G	A	C I	C	С	T A	C	G (G G	A	G G	С	Α (G C	A	G T	G	G G
2. Bordetella bronchiseptica isolate RAH2/Iraq (PV953380.1)	A	G .	A (C A	C	G	G	С	c (C A	G	A	C I	С	С	T A	С	G (G G	A	G G	С	Α (G C	A	G T	G	GG
3. Bordetella bronchiseptica isolate RAH3/Iraq (PV953381.1)	A	G .	A (C A	C	G	G	С	c (C A	G	A	C I	C	С	T A	С	G (G G	A	G G	С	Α (G C	A	G T	G	G G
4. Bordetella bronchiseptica isolate RAH4/Iraq (PV953382.1)	A	G	A (C A	C	G	G	С	c (C A	G	A	C I	С	С	T A	С	G (G G	A	G G	С	Α (G C	A	G T	G	G G
5. Bordetella bronchiseptica isolate RAH5/Iraq (PV953383.1)	A	G	A (C A	C	G	G	С	c (C A	G	A	C I	С	С	T A	С	G (G G	A	G G	С	Α (G C	A	G T	G	G G
5. Bordetella bronchiseptica isolate RAH6/Iraq (PV953384.1)	A	G ,	A (C A	C	G	G	С	c (C A	G	A	C I	С	С	T A	С	G (G G	A	G G	С	Α (G C	A	G T	G	G G
7. Bordetella bronchiseptica isolate RAH7/Iraq (PV953385.1)	A	G	A (C A	C	G	G	С	c (C A	G	A	C I	C	С	T A	C	G (G G	A	G G	С	Α (3 C	A	G T	G	G G
8. Bordetella bronchiseptica isolate RAH8/Iraq (PV953386.1)	A	G	A (C A	C	G	G	С	c (C A	G	A	C I	C	С	T A	С	G (G G	A	G G	С	Α (G C	A	G T	G	G G
9. Bordetella bronchiseptica isolate RAH9/Iraq (PV953387.1)	A	G	A (C A	C	G	G	С	c (C A	G	A	C I	C	С	T A	С	G (G G	A	G G	С	Α (G C	A	G T	G	G G
10. Bordetella bronchiseptica isolate RAH10/Iraq (PV953388.1)	A	G	A (C A	C	G	G	С	C (C A	G	A	C I	C	C	T A	С	G (G G	A	G G	С	Α (G C	A	G T	G	G G
11. Bordetella bronchiseptica strain BbP4/Mexico (FJ867619.1)	A	G	A (C A	C	G	G	С	C (C A	G	A	C I	C	С	T A	С	G (G G	A	G G	С	Α (G C	A	G T	G	G G
12. Bordetella bronchiseptica strain 1518596000/Mexico (JQ953656.2)	A	G	A (C A	C	G	G	С	c (C A	G	A	C I	C	С	T A	С	G (G G	A	G G	С	Α (G C	A	G T	G	G G
13. Bordetella bronchiseptica strain BbP18/Mexico (GQ131888.1)	A	G	A (C A	C	G	G	С	c (C A	G	A	C I	C	С	T A	С	G (G G	A	G G	С	Α (G C	A	G T	G	G G
14. Bordetella bronchiseptica strain LMG 3521/USA (KF601903.1)	A	G	A (C A	C	G	G	С	C (C A	G	A	C I	C	С	T A	С	G (G G	A	G G	С	Α (G C	A	G T	G	G G
15. Bordetella bronchiseptica strain GG2473/India (PV495788.1)	A	G	A (C A	C	G	G	С	C (C A	G	A	C I	C	С	T A	С	G (G G	A	G G	С	Α (G C	A	G T	G	G G
 Bordetella bronchiseptica isolate Iraq-Swine 7/Iraq (PQ215830.1) 	A	G	A (C A	C	G	G	С	C (C A	G	A	C I	C	С	T A	С	G (G G	A	G G	С	Α (G C	A	G T	G	G G
17. Bordetella bronchiseptica isolate Iraq-Pet Dog 11/Iraq (PQ215823.1)	A	G	A (C A	C	G	G	С	C (C A	G	A	C I	C	С	T A	С	G (G G	A	G G	С	Α (G C	A	G T	G	G G
18. Bordetella bronchiseptica isolate IRAQ-DOG 9/Iraq (PQ215807.1)	G	G ?	Γ(G A	C	A	A	A	C (C	G	A	G (j A	A	G (T	G (G G	A	G A	T	G A	C	G	T (À	A G
19. Bordetella bronchiseptica strain HT200/India (FJ969842.3)	A	G	A (C A	C	G	G	С	C (C A	G	A	C I	C	С	T A	С	G (G G	A	G G	С	Α (G C	A	G T	G	G G
20. Bordetella bronchiseptica strain A5/Poland (MT040725.1)	A	G	A (C A	C	G	G	С	C (C A	G	A	C I	C	С	T A	С	G (G G	A	G G	С	Α (G C	A	G T	G	G G
21. Bordetella bronchiseptica strain LSBSG1/China (MN082542.1)	A	G	A (C A	C	G	G	С	c (C A	G	A	C I	C	С	T A	С	G (G G	A	G G	С	Α (G C	A	G T	G	G G
22. Bordetella bronchiseptica isolate TRE155202/Malaysia (LN929735.1)	T	T	G (G A	l T	A	A	C.	Α (G 1	G	A	C (; G	T	C A	T	G	G	A	G A	Α	Α (G C	G	T (; G	G G
23. Bordetella bronchiseptica strain 78B1/Mexico (JX129161.2)	G	G :	Γ(G A	C	Α	A	A	C (0	G	A	G (i A	A	G (T	G (G G	A	G A	T	G A	C	G	T (À	A G
24. Bordetella bronchiseptica strain Eq128/India (KT368942.1)	A	G	A (C A	C	G	G	С	C (C A	G	A	C I	C	С	T A	С	G (G G	A	G G	С	Α (G C	A	G T	G	G G
25. Bordetella bronchiseptica strain LHZ014/China (KC197061.1)	A	G	A (C A	C	G	G	С	c (C A	G	A	C I	C	С	T A	С	G (G G	A	G G	С	Α (G C	A	G T	G	G G
26. Bordetella bronchiseptica isolate 939/940/USA (DQ990876.1)	A	G	A (C A	C	G	G	С	c (C A	G	A	C I	С	С	T A	С	G (G G	A	G G	С	Α (G C	A	G T	G	G G
27. Bordetella bronchiseptica strain BbWWR/China (PQ892127.1)	A	G	A (C A	C	G	G	С	c (C A	G	A	C I	C	С	T A	С	G (G G	A	G G	С	Α (G C	A	G T	G	G G
28. Bordetella bronchiseptica strain BFA21/India (PQ277051.1)	A	G	A (C A	C	G	G	С	c (C A	G	A	C I	C	С	T A	С	G (G G	A	G G	С	Α (G C	A	G T	G	G G
29. Bordetella bronchiseptica strain RL57/China (OR553882.1)	A	G	A (C A	C	G	G	С	C (C A	G	A	C I	C	С	T A	С	G (G G	A	G G	С	Α (G C	A	G T	G	G G
30. Bordetella bronchiseptica strain CQ-2023-9/China (OQ780727.1)	A	G	A (C A	C	G	G	С	C (C A	G	A	C I	C	C	T A	C	G (G G	A	G G	С	Α (G	A	G T	G	G G
31. Bordetella bronchiseptica strain CMCC(B)58404/China (MW452978.1)	A	G	A (C A	C	G	G	С	C (C A	G	A	C I	C	C	T A	C	G (G G	A	G G	С	Α (G C	A	G T	G	G G

Figure (2): Multiple sequence alignment of local and global B. bronchiseptica isolates / strains by MEGA-11

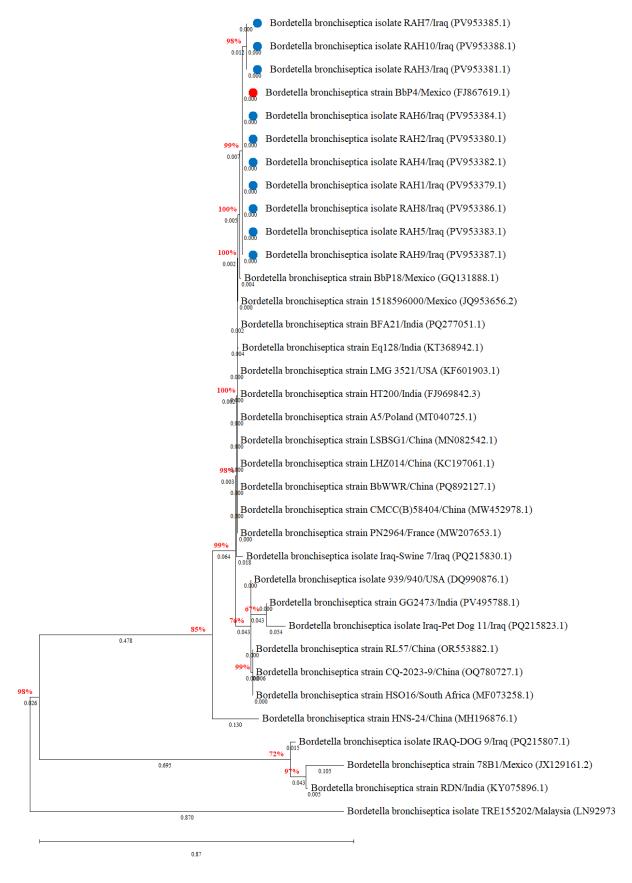


Figure (3): Phylogenetic tree analysis of local and global B. bronchiseptica isolates / strains

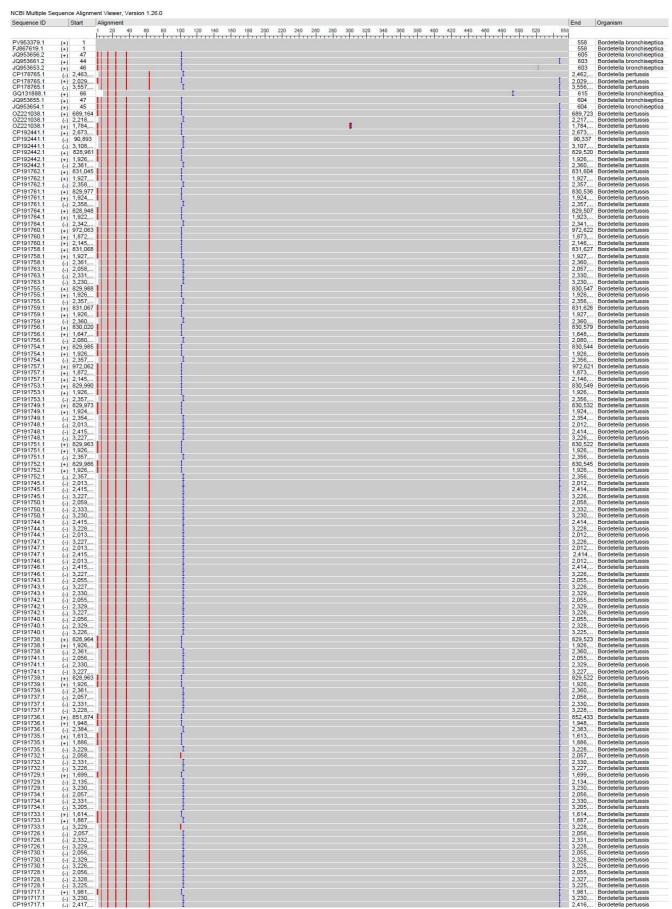


Figure (4): Multiple sequence alignment of local and global B. bronchiseptica isolates / strains by NCBI-Viewer

Table (1): Homology sequence identification for local and NCBI-BLAST B.bronchisepticaisolates / strains

Local isolate	2	NCBI-BL	NCBI-BLAST isolate									
Name	Access. No.	Host	Source	Country	Access. No.							
RAH1	PV953379.1	Human	Nasal swab	Mexico	FJ867619.1	98.97						
RAH2	PV953380.1	Human	Nasal swab	Mexico	FJ867619.1	98.95						
RAH3	PV953381.1	Human	Nasal swab	Mexico	FJ867619.1	99.11						
RAH4	PV953382.1	Human	Nasal swab	Mexico	FJ867619.1	99.09						
RAH5	PV953383.1	Human	Nasal swab	Mexico	FJ867619.1	99.13						
RAH6	PV953384.1	Human	Nasal swab	Mexico	FJ867619.1	99.14						
RAH7	PV953385.1	Human	Nasal swab	Mexico	FJ867619.1	99.10						
RAH8	PV953386.1	Human	Nasal swab	Mexico	FJ867619.1	99.14						
RAH9	PV953387.1	Human	Nasal swab	Mexico	FJ867619.1	99.05						
RAH10	PV953388.1	Human	Nasal swab	Mexico	FJ867619.1	99.12						

IL-10 levels

The findings of quantitative ELISA among totally 180 study individuals involving 150 respiratory-diseased patients and 30 healthy ones as a control revealed that the values (M \pm SE) of respiratory-diseased patients (47.474 \pm 2.547pg/ml) were significantly higher (p<0.0028; 95%CI: 12.29 to 62) than reported in healthy individuals (14.145 \pm 0.888pg/ml), (Figure 5).

In comparison between the positively infected respiratory-diseased patients with B. bronchiseptica(total number: 19) and negativelyinfected respiratory-diseased patients (total number: 131), the concentrations of IL-10 were differed insignificantly (p<0.0593; 95%CI: 37.08 to 55.93) between the infected (49.259 \pm 3.145pg/ml) and non-infected (45.688 \pm 4.059pg/ml) respiratory-diseased patients (Figure 6).

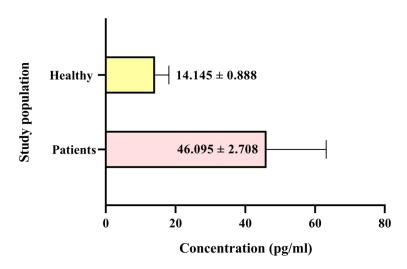


Figure (5): Levels of IL-10 among the study population (patients: 150; healthy: 30)

Figure (6): Levels of IL-10 among the respiratory-diseased patients (total number: 150)

4. Discussion

The results of present study indicated molecularly that B. bronchiseptica was found in 12.67% of nasal swab samples of respiratory-diseased patientssuggesting that this pathogen might play a considerable role in complicating of respiratory infections and increasing the antibiotic susceptibility. In earlier evidences, B. bronchiseptica in humanshas been verified in several cases; for example, a 26 years old male was showed the signs of right lower lobe atelectasis and high body temperature after intubation on a respirator in addition to a 54 years old male suffering from a severe sore throat, cough, difficulty swallowing, and difficult breath(Woolfrey and Moody, 1991). Gueirard et al. (1995) identified the presence of microorganismin a study case of woman with bronchopneumonia, with demonstratingthe role of rabbit in transmission of infection. Dworkin et al. (1999) detected by culture an existence of bacterium in persons diseased with HIV infections. Later, García-de-la-Fuente et al. (2015) examined twenty twoill individualshaving the pathogen. Woods et al. (2020) reported a case with a history of chest trauma from pedestrian collision, cough, hemoptysis, and fever with negative screening results for autoimmune diseases and immunodeficiency virus. Then, several researchers have been addressed the specific immunological responses elicited by the bacterium, differentiating between local mucosal immunity and systemic antibody production, and delineated the most effective diagnostic methodologies (Caulfield et al., 2023; Miguelena Chamorro et al., 2023; Parrish andGestal, 2024). Other studies highlighted the importance of understanding the host immune responses to B. bronchiseptica particularly considering how the environmental and co-infection viral factors can compromise host immunity and predispose animals to more severe respiratory diseases (Macpherson et al., 2022; Zafar et al., 2025). However, pathological toB. bronchisepticain animals and humans is restrictedfor alterationrelated inferencewhich collectedthroughoutinfected animalsorhuman autopsies (Kadhimet al., 2025; Malik et al., 2025).

Ourphylogeneticallydat demonstrated the identity of study isolates to the Mexican strain. The 16S rRNAgene is an exclusive and ubiquitous molecular mark with critical roles in identification of bacterial pathogenssuch as B. bronchiseptica(Einarsson and Boutin, 2019), especially when usual culturing techniques are inadequate. It can be

discriminated at species level by specific phylogenies in its highly conserved and variable regions so that it is a cornerstone in clinical microbiology in bacterial species identification (Nunes Ramos et al., 2025). The ubiquitous occurrence of this gene in all described species of bacteria and archaea, is relatively uniform distribution with conserved areas to design universal primers, make it an excellent ribotyping tool in prokaryotes (Barreto et al., 2014; Nazir et al., 2019). The full-length 16S rRNA gene with a length of about 1,500 base pairs augments its usefulness by incorporating enough phylogenetic information to aid in high-resolution taxonomic classification that is beyong the reach of shorter sequence fragments (Weinroth et al., 2022). In addition, improved sequencing methodology, including deep sequencing of 16S rRNA gene amplified by universal primers, has transformed research into the nature of diverse microbial communities, including uncultured species (Abellan-Schneyder et al., 2021). This gene stands out as especially useful as its hypervariable domains allow species level differentiation to occur even on closely related bacteria taxa (Bose and Moore, 2023).

In the present study, the findings of IL-10 were showed a significant elevation in values of respiratory-diseased patients compared to healthy; however, insignificant variation was seen between the molecularly infected and non-infected B. bronchiseptica patients. Cytokines like II-1, IL-6, and IL-10 are diverse group of signaling molecules that play a crucial role in regulating immune responses, inflammation, and cell communication within the body by modulation of antigen presentation by immune cells and the direct suppression of pro-inflammatory cytokine production, thereby preventing excessive immune activation that could lead to tissue damage (Gulati et al., 2016; Kany et al., 2019). Also, cytokines act as messengers, influencing the behavior of various cells including immune cells and coordinating the body's response to threats like infections and tissue damage (Harvanová et al., 2023). The intricate balance maintained by IL-10 is particularly relevant in the context of respiratory diseases where chronic inflammation and immune-dys-regulation contribute significantly to pathogenesis(de AraújoMorais et al., 2021; Junainah et al., 2025). Despite its recognized anti-inflammatory effects, emerging evidence points to complex, sometimes paradoxical roles for IL-10 in promoting fibrosis, particularly in chronic inflammatory settings (Steen et al., 2020). However, the precise role of IL-10 in conditions like lung fibrosis remains complex, given its capacity to down-regulate inflammation and being classified as a Th2 cytokine (Huaux, 2021). Given the role, therapeutic modulation of IL-10 activity represents a promising strategy for a range of immune disorders, necessitating a thorough exploration of its signaling pathways and downstream effectors (Wang et al., 2019; Nie et al., 2025).

5. Conclusion

This study implicates molecularly, for the first time in Iraq, B.bronchiseptica in respiratory-diseased patients, close-relationship between the study and global isolates throughout phylogenetic analysis, and the level of IL-10 in respiratory-diseased and the healthy population. Furthermore molecular studies and genetic surveillance are greatly needed to insight the role of B.bronchiseptica in other human infections, and to adapt active prevention strategies and developing new therapeutic interventions that can effectively target emerging resistant strains and reduce the burden of infection.

References

- 1. Abellan-Schneyder, I., Matchado, M.S., Reitmeier, S., Sommer, A., Sewald, Z., Baumbach, J., and Neuhaus, K. (2021). Primer, pipelines, parameters: issues in 16S rRNA gene sequencing. Msphere, 6(1), 10-1128.
- 2. Aktay-Cetin, Ö., Pullamsetti, S. S., Herold, S., and Savai, R. (2025). Lung tumor immunity: redirecting macrophages through infection-induced inflammation. Trends in Immunology.
- Al-Gharban, H.A.A.J. (2017). Seroepidemiological detection and culture utilization for diagnosis of carrier horses and donkeys with strangles. Journal of Education College Wasit University, 1(28), 649-660.
- 4. Barreto, D.P., Conrad, R., Klose, M., Claus, P., and Enrich-Prast, A. (2014). Distance-decay and taxa-area relationships for bacteria, archaea and methanogenicarchaea in a tropical lake sediment. Plos one, 9(10), e110128.
- 5. Belcher, T., Dubois, V., Rivera-Millot, A., Locht, C., and Jacob-Dubuisson, F. (2021). Pathogenicity and virulence of Bordetella pertussis and its adaptation to its strictly human host. Virulence, 12(1), 2608-2632.
- 6. Bose, N., and Moore, S. D. (2023). Variable region sequences influence 16S rRNA performance. Microbiology Spectrum, 11(3), e01252-23.
- 7. Brown, M. A. (2022). The epithelial cell in host-pathogen interactions in airways disease (Doctoral dissertation, University of Oxford).
- 8. Calderaro, A., Buttrini, M., Farina, B., Montecchini, S., De Conto, F., and Chezzi, C. (2022). Respiratory tract infections and laboratory diagnostic methods: a review with a focus on syndromic panel-based assays. Microorganisms, 10(9), 1856.
- 9. Carlini, V., Noonan, D. M., Abdalalem, E., Goletti, D., Sansone, C., Calabrone, L., and Albini, A. (2023). The multifaceted nature of IL-10: regulation, role in immunological homeostasis and its relevance to cancer, COVID-19 and post-COVID conditions. Frontiers in immunology, 14, 1161067.
- 10. Caulfield, A. D., Callender, M., and Harvill, E. T. (2023). Generating enhanced mucosal immunity against Bordetella pertussis: current challenges and new directions. Frontiers in Immunology, 14, 1126107.
- 11. de AraújoMorais, A. H., de Souza Aquino, J., da Silva-Maia, J. K., de Lima Vale, S. H., Maciel, B. L. L., and Passos, T. S. (2021). Nutritional status, diet and viral respiratory infections: perspectives for severe acute respiratory syndrome coronavirus 2. British Journal of Nutrition, 125(8), 851-862.

- Dworkin, M. S., Sullivan, P. S., Buskin, S. E., Harrington, R. D., Olliffe, J., MacArthur, R.
 D., and Lopez, C. E. (1999). Bordetellabronchiseptica infection in human immunodeficiency virus-infected patients. Clinical infectious diseases, 28(5), 1095-1099.
- 13. Einarsson, G. G., and Boutin, S. (2019). Techniques: culture, identification and 16S rRNA gene sequencing. The Lung Microbiome (ERS Monography), 18-34.
- 14. García-de-la-Fuente, C., Guzmán, L., Cano, M. E., Agüero, J., Sanjuán, C., Rodríguez, C., and Martínez-Martínez, L. (2015). Microbiological and clinical aspects of respiratory infections associated with Bordetellabronchiseptica. Diagnostic microbiology and infectious disease, 82(1), 20-25.
- 15. Gueirard, P., Weber, C., Le Coustumier, A., and Guiso, N. (1995). Human Bordetellabronchiseptica infection related to contact with infected animals: persistence of bacteria in host. Journal of clinical microbiology, 33(8), 2002-2006.
- 16. Gulati, K., Guhathakurta, S., Joshi, J., Rai, N., and Ray, A. J. M. I. (2016). Cytokines and their role in health and disease: a brief overview. MojImmunol, 4(2), 00121.
- 17. Harvanová, G., Duranková, S., and Bernasovská, J. (2023). The role of cytokines and chemokines in the inflammatory response. Alergologia Polska-Polish Journal of Allergology, 10(3), 210-219.
- 18. Huaux, F. (2021).Interpreting immunoregulation in lung fibrosis: a new branch of the immune model.Frontiers in Immunology, 12, 690375.
- 19. Ibraheim, H. K., Madhi, K. S., Baqer, G. K., and Gharban, H. A. (2023). Effectiveness of raw bacteriocin produced from lactic acid bacteria on biofilm of methicillin-resistant Staphylococcus aureus. Veterinary World, 16(3), 491.
- 20. Jasim, M. J., and Radhy, A. M. (2025). Clinical and molecular study of upper respiratory tract infections of cats caused by Bordetellabronchiseptica in cats at Baghdad city. Cuestiones de Fisioterapia, 54(3), 563-580.
- 21. Junainah, E. M., Abd-El-Rahman, A. H., Alamin, A. A., Hassan, K. E., Elesawy, B. H., Elrashidy, A. H., and Taha, S. A. (2025). Immunopathology and therapeutic strategies for long COVID: mechanisms, manifestations, and clinical implications. AIDS reviews, 27(1).
- 22. Kadhim, H. M., Al-Galebi, A. A. S., Al-Hassani, M. K., and Gharban, H. A. (2025). Molecular and serological incidences of Bordetellabronchiseptica in pet dogs with urinary infections. Open Veterinary Journal, 15(3), 1397.
- 23. Kadlec, K., and Schwarz, S. (2018). Antimicrobial resistance in Bordetellabronchiseptica. Microbiology spectrum, 6(4), 10-1128.
- 24. Kany, S., Vollrath, J. T., and Relja, B. (2019). Cytokines in inflammatory disease. International journal of molecular sciences, 20(23), 6008.

- 25. Kumar, R., Ng, S., and Engwerda, C. (2019). The role of IL-10 in malaria: a double edged sword. Frontiers in immunology, 10, 229.
- Macpherson, M. L., Pinckney, R., Sylvester, W., Bidaisee, S., and Macpherson, C. N.
 (2022). Man's best friend and our shared infectious diseases. CABI Reviews, (2022).
- 27. Malik, M., Kumar, N., and Dixit, C. P. (2025). Pathophysiology of Respiratory Disorders. In Fundamentals of Veterinary Pathophysiology (pp. 140-151). CRC Press.
- 28. Mattoo, S., and Cherry, J. D. (2005). Molecular pathogenesis, epidemiology, and clinical manifestations of respiratory infections due to Bordetella pertussis and other Bordetella subspecies. Clinical microbiology reviews, 18(2), 326-382.
- Miguelena Chamorro, B., De Luca, K., Swaminathan, G., Longet, S., Mundt, E., and Paul,
 S. (2023). Bordetellabronchiseptica and Bordetella pertussis: similarities and differences in infection, immuno-modulation, and vaccine considerations. Clinical Microbiology
 Reviews, 36(3), e00164-22.
- 30. Mohammad, H.A., Gharban, H.A.G., and Ajaj, E.A. (2025).Molecular and phylogenetic analysis of Bordetellabronchisepteca in respiratory-diseased pet dogs.Iraqi Journal of Veterinary Sciences, 39(4), 1-14.
- 31. Nazir, R., Rehman, S., Nisa, M., and ali Baba, U. (2019). Exploring bacterial diversity: from cell to sequence. In Freshwater Microbiology (pp. 263-306). Academic Press.
- 32. Nie, J., Zhou, L., Tian, W., Liu, X., Yang, L., Yang, X., and Wei, J. (2025). Deep insight into cytokine storm: from pathogenesis to treatment. Signal Transduction and Targeted Therapy, 10(1), 1-38.
- 33. Nieves, D. J., and Heininger, U. (2016).Bordetella pertussis.Emerging Infections 10, 311-339.
- 34. Nunes Ramos, J., Veloso da Costa, L., Viana Vieira, V., and Lima Brandão, M. L. (2025). Challenges in the Identification of Environmental Bacterial Isolates from a Pharmaceutical Industry Facility by 16S rRNA Gene Sequences.DNA, 5(3), 33.
- 35. Parrish, K. M., and Gestal, M. C. (2024). Eosinophils as drivers of bacterial immunomodulation and persistence. Infection and Immunity, 92(9), e00175-24.
- 36. Rose, K. T., Rajesh, J. B., Marwein, S. C., Kar, P., Behera, S. K., Bayan, H., and Prasad, H. (2025). Significance of Bordetellabronchiseptica in Respiratory Tract Infections of Canines. International Journal of Bio-Resource and Stress Management, 16(1).
- 37. Saxton, R. A., Glassman, C. R., and Garcia, K. C. (2023). Emerging principles of cytokine pharmacology and therapeutics. Nature Reviews Drug Discovery, 22(1), 21-37.

- 38. Steen, E. H., Wang, X., Balaji, S., Butte, M. J., Bollyky, P. L., and Keswani, S. G. (2020). The role of the anti-inflammatory cytokine interleukin-10 in tissue fibrosis. Advances in wound care, 9(4), 184-198.
- 39. Wang, X., Wong, K., Ouyang, W., and Rutz, S. (2019). Targeting IL-10 family cytokines for the treatment of human diseases. Cold Spring Harbor perspectives in biology, 11(2), a028548.
- 40. Weinroth, M. D., Belk, A. D., Dean, C., Noyes, N., Dittoe, D. K., RothrockJr, M. J., and Wells, J. E. (2022). Considerations and best practices in animal science 16S ribosomal RNA gene sequencing microbiome studies. Journal of animal science, 100(2), skab346.
- Woods, P., Ordemann, K., Stanecki, C., Brown, J., and Uzodi, A.
 (2020).Bordetellabronchiseptica pneumonia in an adolescent: case report and review of the pediatric literature. Clinical Pediatrics, 59(3), 322-328.
- 42. Woolfrey, B. F., and Moody, J. A. (1991). Human infections associated with Bordetellabronchiseptica. Clinical microbiology reviews, 4(3), 243-255.
- 43. Yi, L., Fan, H., Yuan, S., Li, R., Wang, H., Quan, Y., and Wang, Y. (2024). Antimicrobial Resistance and Biofilm Formation of Bordetellabronchiseptica in Central China, with Evidence of a Rare Heteroresistance Strain to Gentamicin. Animals, 14(9), 1301.
- 44. Zafar, M. A., Hernandez, G. E., and Walker, K. A. (2025).Mechanisms of bacterial host-to-host transmission.Microbiology and Molecular Biology Reviews, e00259-24.

ABOUT EMBAR PUBLISHERS

Embar Publishers is an open-access, international research based publishing house committed to providing a 'peer reviewed' platform to outstanding researchers and scientists to exhibit their findings for the furtherance of society to provoke debate and provide an educational forum. We are committed about working with the global researcher community to promote open scholarly research to the world. With the help of our academic Editors, based in institutions around the globe, we are able to focus on serving our authors while preserving robust publishing standards and editorial integrity. We are committed to continual innovation to better support the needs of our communities, ensuring the integrity of the research we publish, and championing the benefits of open research.

Our Journals

- 1. Research Journal of Education, linguistic and Islamic Culture 2945-4174
- 2. Research Journal of Education and Advanced Literature 2945-395X
- 3. Research Journal of Humanities and Cultural Studies 2945-4077
- 4. Research Journal of Arts and Sports Education 2945-4042
- 5. Research Journal of Multidisciplinary Engineering Technologies 2945-4158
- 6. Research Journal of Economics and Business Management 2945-3941
- 7. Research Journal of Multidisciplinary Engineering Technologies 2945-4166
- 8. Research Journal of Health, Food and Life Sciences 2945-414X
- 9. Research Journal of Agriculture and Veterinary Sciences 2945-4336
- 10. Research Journal of Applied Medical Sciences 2945-4131
- 11. Research Journal of Surgery 2945-4328
- 12. Research Journal of Medicine and Pharmacy 2945-431X
- 13. Research Journal of Physics, Mathematics and Statistics 2945-4360